精英家教网 > 高中数学 > 题目详情
15.直线x=-1与抛物线y2=2x的位置关系是相离.

分析 将直线x=-1代入抛物线y2=2x,可得二次方程,求解,即可判断位置关系.

解答 解:将直线x=-1代入抛物线y2=2x,
可得y2=-2,方程无解,
故直线x=-1与抛物线y2=2x的位置关系相离.
故答案为:相离.

点评 本题考查直线与抛物线的位置关系的判定,注意联立直线方程和抛物线的方程,由二次方程确定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设集合A={y|y=x2-2x+1,0≤x≤3},集合B={x|x2-(2m-1)x+m(m-1)≤0}.已知命题p:x∈A,命题q:x∈B,且命题p是命题q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{\sqrt{3}tan12°-3}{sin12°(4cos{\;}^{2}12°-2)}$=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,若函数f(x)在[-2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an},且a9=20,则S17=(  )
A.170B.200C.340D.360

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中不正确的是(  )
A.m⊥α,n⊥α,则m∥nB.m?α,α∥β,则m∥βC.m⊥α,n?α,则m⊥nD.m∥α,n?α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知以F为焦点的抛物线y2=2px(p>0)的准线方程为x=-1,A、B、C为该抛物线上不同的三点,且点B在x轴的下方,若|${\overrightarrow{FA}}$|、|${\overrightarrow{FB}}$|、|${\overrightarrow{FC}}$|成等差数列,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=0,则直线AC的方程为(  )
A.y=xB.y=x+1C.y=2x+1D.y=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn},其中{an}为等差数,列,b1=a1=2,且a3为a2与a5-1的等比中项,
(1)求an
(2)对$n∈{N^*},{b_{n+1}}-{b_n}={3^n}{a_n}$,求bn(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等差数列,若a1=1,a2+2,a4+4,a6+6构成等比数列,这数列{an}的公差d等于(  )
A.1B.-2C.2D.-1

查看答案和解析>>

同步练习册答案