精英家教网 > 高中数学 > 题目详情
已知f(x)是定义域为R的奇函数,且对任意实数x有f(1+x)=f(1-x),若f(1)=2,则f(2010)+f(2011)=(  )
分析:由函数的奇偶性和f(1+x)=f(1-x),推导出函数的周期,再用周期性把f(2010)+f(2011)转化,根据f(0)=0和f(1)=2即可求值
解答:解:∵f(x)是定义域为R的奇函数
∴f(0)=0,且f(-x)=-f(x)
∴f(1-x)=-f(x-1)
又∵f(1+x)=f(1-x)
∴f(1+x)=-f(x-1)
∴f(x+2)=-f(x)且f(x+4)=-f(x+2)
∴f(x+4)=f(x)
∴原函数的周期为T=4
∴f(2010)=f(2)
f(2011)=f(-1)
∵f(1+x)=f(1-x),且f(0)=0
令x=1得f(2)=f(0)=0
又∵f(x)是定义域为R的奇函数,且f(1)=2
∴f(-1)=-f(1)=-2
∴f(2010)+f(2011)=0+(-2)=-2
故选A
点评:本题考查函数的奇偶性和周期性,要注意已知条件和函数性质的灵活应用.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义域在R上的奇函数,若f(x)的最小正周期为3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,f(-4)=-2,f(x)的导函数f′(x)的图象如图所示,若两正数a,b满足f(a+2b)<2,则
a+4
b+4
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x+2)=f(x),且当x∈[1,2]时,f(x)=x2+2x-1,那么f(x)在[0,1]上的表达式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,且在(0,+∞)内有1003个零点,则f(x)的零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x)的最小正周期是2,且当 x∈[1,2]时,f(x)=x2-2x-1,那么f(x)在[0,1]上的表达式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步练习册答案