精英家教网 > 高中数学 > 题目详情
2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,其短轴的一个端点与两个焦点构成面积为$\sqrt{3}$的正三角形,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A、B两点,线段AB的中点为P.
(I)求椭圆C的标准方程;
(II)过点P垂直于AB的直线与x轴交于点D,试求$\frac{{|{DP}|}}{{|{AB}|}}$的取值范围.

分析 (I)由面积为$\sqrt{3}$的正三角形的边长为2,即可求得a和c的值,b2=a2-c2,即可求得椭圆C的标准方程;
(II)将直线方程,代入椭圆方程,由韦达定理及中点坐标公式,求得P点坐标,求得直线PD的方程及D点坐标,求得丨PD丨及丨AB丨,则$\frac{|DP|}{|AB|}=\frac{{\frac{{3\sqrt{{k^4}+{k^2}}}}{{3+4{k^2}}}}}{{\frac{{12({k^2}+1)}}{{3+4{k^2}}}}}=\frac{1}{4}\sqrt{\frac{k^2}{{{k^2}+1}}}=\frac{1}{4}\sqrt{1-\frac{1}{{{k^2}+1}}}$,由k的取值范围,即可求得$\frac{{|{DP}|}}{{|{AB}|}}$的取值范围.

解答 解:(Ⅰ)设右焦点的坐标为(c,0),易知面积为$\sqrt{3}$的正三角形的边长为2,
依题意知,${a^2}={b^2}+{c^2}=4,c=\frac{1}{2}a=1$,
∴b2=a2-c2=3,-------------(2分)
所以,椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.---------------------------(3分)
(Ⅱ)设过椭圆C的右焦点的直线l的方程为y=k(x-1),
将其代入$\frac{x^2}{4}+\frac{y^2}{3}=1$中得,(3+4k2)x2-8k2x+4k2-12=0,-------(4分)
其中,△=144(k2+1),设A(x1,y1),B(x2,y2),
则${x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}},{x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}$,----------------------------(5分)
∴${y_1}+{y_2}=k({x_1}+{x_2})-2k=\frac{{8{k^3}}}{{3+4{k^2}}}-2k=\frac{-6k}{{3+4{k^2}}}$,----------------(6分)
因为P为线段AB的中点,所以,点P的坐标为$({\frac{{{x_1}+{x_2}}}{2},\frac{{{y_1}+{y_2}}}{2}})$.
故点P的坐标为$({\frac{{4{k^2}}}{{3+4{k^2}}},\frac{-3k}{{3+4{k^2}}}})$,-----------------------------(7分)
又直线PD的斜率为$-\frac{1}{k}$,
直线PD的方程为$y-\frac{-3k}{{3+4{k^2}}}=-\frac{1}{k}(x-\frac{{4{k^2}}}{{3+4{k^2}}})$,------------------(9分)
令y=0得,$x=\frac{k^2}{{3+4{k^2}}}$,则点D的坐标为$({\frac{k^2}{{3+4{k^2}}},0})$,
所以,$|DP|=\sqrt{{{({\frac{k^2}{{3+4{k^2}}}-\frac{{4{k^2}}}{{3+4{k^2}}}})}^2}+{{({\frac{-3k}{{3+4{k^2}}}})}^2}}=\frac{{3\sqrt{{k^4}+{k^2}}}}{{3+4{k^2}}}$,-------(10分)
又$|AB|=\sqrt{{{({x_1}-{x_2})}^2}+{{({y_1}-{y_2})}^2}}=\sqrt{({k^2}+1)[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}$=$\sqrt{({k^2}+1)[{\frac{{64{k^4}}}{{{{(3+4{k^2})}^2}}}-\frac{{4(4{k^2}-12)}}{{3+4{k^2}}}}]}=\frac{{12({k^2}+1)}}{{3+4{k^2}}}$.-----------------(11分)
所以,$\frac{|DP|}{|AB|}=\frac{{\frac{{3\sqrt{{k^4}+{k^2}}}}{{3+4{k^2}}}}}{{\frac{{12({k^2}+1)}}{{3+4{k^2}}}}}=\frac{1}{4}\sqrt{\frac{k^2}{{{k^2}+1}}}=\frac{1}{4}\sqrt{1-\frac{1}{{{k^2}+1}}}$,-------------(12分)
又∵k2+1>1,∴$0<\frac{1}{{{k^2}+1}}<1$,∴$0<\frac{1}{4}\sqrt{1-\frac{1}{{{k^2}+1}}}<\frac{1}{4}$.
所以,$\frac{|DP|}{|AB|}$的取值范围是$(0,\frac{1}{4})$.------------------------------(13分)

点评 本题考查椭圆标准方程简单几何性质,直线与椭圆的位置关系,韦达定理,弦长公式及两点之间的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P为双曲线C右支上一点,直线PF1与圆x2+y2=a2相切,且|PF2|=|F1F2|,则双曲线C的离心率为(  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{{x}^{2}}{5}$+y2=1,点F为椭圆的左焦点,点P为椭圆上任意一点,点A(5,4),那么|PA|-|PF|的最小值5$-2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2},B={1,2,3},则A*B中所有元素之和为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1
C.f (x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=x3,g(x)=$\root{9}{{x}^{9}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)的非空子集共有(  )
A.3个B.4个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.当x>0时,x+$\frac{4}{x}$的最小值为(  )
A.1B.2C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|-3<x<1},N={x|x≤-3},则M∪N=(  )
A.B.{x|x<1}C.{x|x≥1}D.{x|x≥-3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{{2}^{|x|+1}{+x}^{3}+2}{{2}^{|x|}+1}$的最大值为M,最小值为m,则M+m等于(  )
A.0B.2C.4D.8

查看答案和解析>>

同步练习册答案