精英家教网 > 高中数学 > 题目详情
18.海面上有A,B,C三个灯塔,AB=10nmile,$BC=5\sqrt{6}$nmile,从A望C和B成600视角,则从B望C和A成(  )视角.
A.750B.450C.300D.150

分析 由题意抽象出△ABC,然后利用正弦定理求解.

解答 解:如图,

AB=10,BC=$5\sqrt{6}$,∠BAC=60°.
由正弦定理可得:$\frac{10}{sinC}=\frac{5\sqrt{6}}{sin60°}=\frac{5\sqrt{6}}{\frac{\sqrt{3}}{2}}=10\sqrt{2}$,
∴sinC=$\frac{\sqrt{2}}{2}$,
∵10$<5\sqrt{6}$,∴C=45°.
则∠ABC=180°-60°-45°=75°.
故从B望C和A成75°视角.
故选:A.

点评 本题考查了正弦定理在实际问题中的应用,理解题意,建立关系是解题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河南八市高二文上月考一数学试卷(解析版) 题型:选择题

中,内角所对的边分别是,已知,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在如图所示的几何体中.EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)求多面体ABCDE的体积
(Ⅲ)求直线DE与平面EMC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{α}$,$\overrightarrow{β}$,$\overrightarrow{γ}$ 满足|$\overrightarrow{α}$|=1,$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),($\overrightarrow{α}$-$\overrightarrow{γ}$)⊥($\overrightarrow{β}$-$\overrightarrow{γ}$),若|$\overrightarrow{β}$|=$\frac{\sqrt{17}}{2}$,|$\overrightarrow{γ}$|的最大值和最小值分别为m,n,则m+n等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)同时具有下列三个性质:(1)最小正周期为π;(2)在$x=\frac{π}{3}$时取得最大值1;(3)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上是增函数.则y=f(x)的解析式可以是(  )
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({2x+\frac{π}{3}})$C.$y=sin({2x-\frac{π}{6}})$D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知e是自然对数的底数,f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2017.
(Ⅰ)设m=1,求h(x)的极值;
(Ⅱ)设m<-e2,求证:函数φ(x)没有零点;
(Ⅲ)若m≠0,设$F(x)=\frac{m}{f(x)}+\frac{4x+4}{\begin{array}{l}g(x)-1\end{array}}$,求证:F(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,且0≤α<β<γ<2π,则β-α=(  )
A.$\frac{4π}{3}或\frac{2π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用身高x(cm)预报体重$\stackrel{∧}{y}$(kg)满足$\stackrel{∧}{y}$=0.849x-85.712,若要找到41.638kg的人,不一定是在身高为150cm的人中(填“一定”、“不一定”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(2cosx,3),x∈R.
(1)当$\overrightarrow{b}$=λ$\overrightarrow{a}$时,求实数λ和tanx的值;
(2)设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)的最小正周期和单调递减区间.

查看答案和解析>>

同步练习册答案