【题目】(1)某校夏令营有3名男同学A、B、C和3名女同学X、Y、Z,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
①用表中字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
(2)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是多少?
【答案】(1)①详见解析②
(2)![]()
【解析】
(1)①用表中字母一一列举出所有可能的结果,共15个;
②用列举法求出事件
包含的结果有6个,符合古典概型的特征,由此求得事件
发生的概率;
(2)符合几何概型的特征,设第一串彩灯亮的时刻为
,第二串彩灯亮的时刻为
,用不等式表示出条件,画出图象,根据面积之比求出概率.
解:(1)①从6名同学中随机选出2人参加知识竞赛的所有可能结果为
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共15种;
②选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为
,
,
,
,
,
,共6种,
因此,事件M发生的概率
;
(2)设第一串彩灯亮的时刻为
,第二串彩灯亮的时刻为
,则
,
要使两串彩灯亮的时刻相差不超过2秒,则
,
![]()
如图,不等式组
所表示的图形面积为16,
不等式组
所表示的六边形的面积为
,
由几何概型的公式可得
.
科目:高中数学 来源: 题型:
【题目】随着我国经济的飞速发展,人民生活水平得到很大提高,汽车已经进入千千万万的家庭.大部分的车主在购买汽车时,会在轿车或者
中作出选择,为了研究某地区哪种车型更受欢迎以及汽车一年内的行驶里程,某汽车销售经理作出如下统计:
购买了轿车(辆) | 购买了 | |
|
|
|
|
|
|
![]()
(1)根据表,是否有
的把握认为年龄与购买的汽车车型有关?
(2)图给出的是
名车主上一年汽车的行驶里程,求这
名车主上一年汽车的平均行驶里程(同一组中的数据用该组区间的中点值作代表);
(3)用分层抽样的方法从
岁以上车主中抽取
人,再从这
人中随机抽取
人赠送免费保养券,求这
人中至少有
辆轿车的概率。
附:
,![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
汉字听写大会
不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试
现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组
,第2组
,
,第6组
,如图是按上述分组方法得到的频率分布直方图.
![]()
若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
试估计该市市民正确书写汉字的个数的平均数与中位数;
已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABD﹣A1B1C1D1中四边形A1B1C1D1,ADD1A1.ABB1A1均为正方形.点M是BD的中点.点H在线段C1M上,且A1H与平面ABD所成角的正弦值为
.
![]()
(Ⅰ)证明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设P是椭圆
上一点,M,N分别是两圆(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设P是椭圆
上一点,M,N分别是两圆(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三角形
的边长为3,
分别是
边上的点,满足
(如图1).将
折起到
的位置,使平面
平面
,连接
(如图2).
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
.数列
满足
,
.
(1)若
,且
,求正整数
的值;
(2)若数列
,
均是等差数列,求
的取值范围;
(3)若数列
是等比数列,公比为
,且
,是否存在正整数
,使
,
,
成等差数列,若存在,求出一个
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).
![]()
A. 90B. 75C. 60D. 45
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com