精英家教网 > 高中数学 > 题目详情

【题目】某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照 的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从高度在厘米以上(含厘米)的植株中随机抽取株,求所取的株中至少有一株高度在内的概率.

【答案】1;(2

【解析】试题分析:(1)由茎叶图可知中的样本有个,其频率为,由此可求出,因为个,其频率为,则,根据频率之和为,可求出;(2)根据(1)可知高度在内株数为,高度在内的株数为,列出所有情况共种,符合的有种,即可求出.理解题意后列举出所有情况即可.

试题解析:(1)由题意可知, 样本容量,.

2)由题意可知, 高度在内株数为,记这株分别为,高度在内的株数为,株分别为.抽取株的所有情况有, 分别为,,,,其中株的高度都不在内的情况有种分别为 ,所抽取的株中至少有一株高度在内的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】极坐标与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.曲线C1的极坐标方程为ρ﹣2cosθ=0,曲线C1的参数方程为(t是参数,m是常数)
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C2与C1有两个不同的公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的函数f(x)= ,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解xi(i=1,2,3,4,5),则f(x1+x2+x3+x4+x5+2)=(
A.
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|3x﹣1|+ax+3
(1)若a=1,解不等式f(x)≤4;
(2)若函数f(x)有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题:
①双曲线 ﹣x2=1的渐近线方程为y=± x;
②命题P:x∈R+ , sinx+ ≥1是真命题;
③已知线性回归方程为 =3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6;
则正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,过点的直线与椭圆交于两点.

1若直线的斜率为1, ,求椭圆的标准方程;

21中椭圆的右顶点为,直线的倾斜角为,问为何值时,取得最大值,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题是  

A. 同垂直于一直线的两条直线互相平行

B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱

C. 过空间任一点与两条异面直线都垂直的直线有且只有一条

D. 过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

同步练习册答案