精英家教网 > 高中数学 > 题目详情
(2012•河西区一模)某大学对在校的学生进行素质拓展测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为
8
15

(Ⅰ)求该小组中女生的人数;
(Ⅱ)若从中随机选3人参加测试,求所选的三人恰为两名男生一名女生的概率;
(Ⅲ)假设此项测试对该小组的学生而言,每个女生通过的概率均为
3
4
,每个男生通过的概率均为
2
3
;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.
分析:(I)设出该小组中有n个女生,根据古典概型的概率公式得到比值,等于恰为一男一女的概率,解出关于n的方程.
(Ⅱ)根据古典概型的概率公式得到恰为两名男生一名女生的概率P=
C
2
4
C
1
6
C
3
10
=
3
10

(Ⅲ)由题意知ξ的取值为0,1,2,3,集合变量对应的事件,和独立重复试验的概率公式,得到变量对应的概率,写出分布列,求出期望值.
解答:解:(Ⅰ)设该小组中有n个女生,
由题意,得
C
1
n
C
1
10-n
C
2
10
=
8
15
,…(2分)
解得n=6或n=4(舍),
所以该小组有6名女生.…(4分)
(Ⅱ)恰为两名男生一名女生的概率P=
C
2
4
C
1
6
C
3
10
=
3
10
…(7分)
(Ⅲ)由题意,ξ的取值为0,1,2,3,
P(ξ=0)=
1
3
×
1
3
×
1
4
=
1
36

P(ξ=1)=C
 
1
2
×
2
3
×
1
3
×
1
4
+(
1
3
)2×
3
4
=
7
36

P(ξ=2)=×
2
3
×
1
3
×
3
4
+(
1
3
)
2
×
1
4
=
16
36

P(ξ=3)=(
2
3
)2×
3
4
=
12
36
.…(11分)
所以ξ的分布列为:
ξ 0 1 2 3
P
1
36
7
36
16
36
12
36
所以Eξ=0×
1
36
+1×
7
36
+2×
16
36
+3×
12
36
=
25
12
.…(13分)
点评:本题考查离散型随机变量的分布列和期望,考查古典概型的概率公式,考查独立重复试验的概率公式,考查利用概率与统计的知识解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河西区一模)设函数f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的单调区间;
(2)若当x∈[
1e
-1,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好有两个相异的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)已知平面内点A(cos
x
2
,sin
x
2
)
,点B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求当f(x)取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)若数列{an} 满足
an+1 2
an 2
=p(p为正常数,n∈N*),则称{an} 为等方比数列.甲:数列{an} 是等方比数列;乙:数列{an} 是等比数列.则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)设复数Z满足Z•(1+2i)=4+3i,则Z等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区一模)(2x3-
1
x
7的展开式中常数项为a,则a的值为(  )

查看答案和解析>>

同步练习册答案