精英家教网 > 高中数学 > 题目详情
已知在R上单调递增,记的三内角的对应边分别为,若时,不等式恒成立.
(Ⅰ)求实数的取值范围;
  (Ⅱ)求角的取值范围;
(Ⅲ)求实数的取值范围.
(1) .  (2) ,(3)
(1)由在R上单调递增,恒成立,,即
,即时,
时,,即当时,能使在R上单调递增,
  (2),由余弦定理:,----5分
(3) 在R上单调递增,且,所以
,---10分
,即,即,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

的最大值为M。
(1)当时,求M的值。
(2)当取遍所有实数时,求M的最小值
(以下结论可供参考:对于,当同号时取等号)
(3)对于第(2)小题中的,设数列满足,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数a的值,并判断上的单调性;
(2)若数列满足
(3)在(2)的条件下,

求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若为大于0的常数),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过(-1,1)点,其反函数的图象过(8,2)点。
(1)求a,k的值;
(2)若将的图象向在平移两个单位,再向上平移1个单位,就得到函数的图象,写出的解析式;
(3)若函数的最小值及取最小值时x的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数是常数)是奇函数,且满足
(Ⅰ)求的值;
(Ⅱ)试判断函数在区间上的单调性并说明理由;
(Ⅲ)试求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过原点,,函数y=f(x)与y=g(x)的图象交于不同两点A、B。
(1)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;
(2)若使g(x)=0的x值满足,求线段AB在x轴上的射影长的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数在y轴上的截距是2,且在上单调递增,在(-1,2)上单调递减.

20070328

 
   (Ⅰ)求函数f (x)的解析式;

   (Ⅱ)若函数,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值为-.
(1)求a,b,c,d的值;
(2)证明:当x∈[-1,1]时,图象上不存在两点使得过此两点处的切线互相垂直;
(3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤.

查看答案和解析>>

同步练习册答案