精英家教网 > 高中数学 > 题目详情
若-1≤x≤1时,函数f(x)=ax+2a+1的值有正值也有负值,则a的取值范围是(  )
A、a≥-
1
3
B、a≤-1
C、-1<a<-
1
3
D、以上都不对
考点:函数的零点
专题:函数的性质及应用
分析:利用一次函数和直线对应,建立不等式即可求解.
解答: 解:∵函数f(x)=ax+2a+1的值有正值也有负值,
∴f(-1)和f(1)值的符号相反,
即f(-1)f(1)<0,
∴(3a+1)(a+1)<0,
解得-1<a<-
1
3

故选:C.
点评:本题主要考查根的存在性对应的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f′(x)<0若a=f(0),b=f(
1
2
),c=f(3)
,则a,b,c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求:
(1)甲中奖的概率P(A);
(2)甲、乙都中奖的概率P(B);
(3)只有乙中奖的概率P(C);
(4)乙中奖的概率P(D)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,(n∈N*),都在函数y=log
1
2
x的图象上.
(1)若数列{bn}是等差数列,求证:数列{an}是等比数列;
(2)若数列{an}的前n项和是Sn=1-(
1
2
)n
,设过点Pn、Pn+1的直线与坐标轴所围成的三角形面积为cn,求cn的最大值;
(3)若存在一个常数q,使得对任意的正整数n都有dn<q,且
lim
n→∞
dn
=q,则称{dn}为“左逼近”数列,q为该数列的“左逼近”值.若数列{an}的前n项和是Sn=1-(
1
2
)n
,设数列{bn}的前n项和是Bn,且Tn=
Bn+1
Bn
+
Bn
Bn+1
,An=T1+T2+…+Tn-2n,试判断数列{An}是否为“左逼近”数列,如果是,求出“左逼近”值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2tx+t2-1=0在区间(-2,4)上有两个实根,则实数t的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若动点M到定点F1(0,-1)、F2(0,1)的距离之和为2,则点M的轨迹为(  )
A、椭圆
B、直线F1F2
C、线段F1F2
D、直线F1F2的垂直平分线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c,其中b,c为常数.
(Ⅰ)若函数f(x)在区间[1,+∞)上单调,求b的取值范围;
(Ⅱ)若对任意x∈R,都有f(-1+x)=f(-1-x)成立,且函数f(x)的图象经过点(c,-b),求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列a1=12,a6=27,则公差d等于(  )
A、
1
3
B、
5
2
C、3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱锥A-BCD的底面边长为2,侧棱长为3,E为棱BC的中点.
(1)求异面直线AE与CD所成角的大小(结果用反三角函数值表示);
(2)求该三棱锥的体积V.

查看答案和解析>>

同步练习册答案