精英家教网 > 高中数学 > 题目详情
已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).
(1)若a∥b,求sinθ和cosθ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.
(1)sinθ=,cosθ=   (2)(7,9]

解:(1)∵a∥b,
∴sinθ-cosθ=0,
求得tanθ=.
又∵θ∈(0,),
∴θ=,sinθ=,cosθ=.
(2)f(θ)=(sinθ+)2+(cosθ+1)2
=2sinθ+2cosθ+5
=4sin(θ+)+5.
又∵θ∈(0,),
∴θ+∈(,),
<sin(θ+)≤1,
∴7<f(θ)≤9,
即函数f(θ)的值域为(7,9].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)对于函数,有下列结论:①是奇函数;②是周期函数,最小正周期为;③的图象关于点对称;④的图象关于直线对称.其中正确结论的序号是__________;(直接写出所有正确结论的序号)
(2)对于函数,求满足的取值范围;
(3)设函数的值域为,函数的值域为,试判断集合之间的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为,值域为[-5,1],求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面向量a=(cosx,sinx),b=(cosx+2,sinx),x∈R.
(1)若x∈(0,),证明:a和b不平行;
(2)若c=(0,1),求函数f(x)=a·(b-2c)的最大值,并求出相应的x值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间[π,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x0x0是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.
(1)求f的值;
(2)若对?x,都有|f(x)-m|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则(  )
A.ω=2,φ=B.ω=1,φ=-
C.ω=1,φ=D.ω=2,φ=-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=sinxcosx-cos2x+(x∈R),则f(x)在区间上的值域是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,下列选项正确的是 (     )
A.内是递增的
B.的图像关于原点对称
C.的最小正周期为2π
D.的最大值为1

查看答案和解析>>

同步练习册答案