精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分图象如图所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的单调增区间.

【答案】解:(Ⅰ)根据函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分图象,

可得A=1, =3﹣(﹣1)=4= ,∴ω=

结合五点法作图可得 (﹣1)+φ=0,∴φ= ,f(x)=sin( x+ ).

(Ⅱ)令2kπ﹣ x+ ≤2kπ+ ,求得8k﹣3≤x≤8k+1,可得函数的增区间为[8k﹣3,8k+1],k∈Z


【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)由题意利用正弦函数的单调区间,求得f(x)的单调增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=6,cosB= ,C=
(1)求AB的长;
(2)求cos(A﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 为实数, .记集合 .若 分别为集合S,T的元素个数,则下列结论不可能的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+2y-2=0,试求:
(1)点P(-2,-1)关于直线l的对称点坐标;
(2)直线 关于直线l对称的直线l2的方程;
(3)直线l关于点(1,1)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4﹣x),求证:当x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求证:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在这个正方体中,

平行;
是异面直线;
是异面直线;
是异面直线;
以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+3x2+9x+a(a为常数).
(1)求函数f(x)的单调递减区间;
(2)若f(x)在区间[﹣2,2]上的最大值是20,求f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1 , l2分别是函数f(x)=sinx,x∈[0,π]图象上点P1 , P2处的切线,l1 , l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期七

车流量x(万辆)

1

2

3

4

5

6

7

PM2.5的浓度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是 = x+ ,其中 = =

查看答案和解析>>

同步练习册答案