精英家教网 > 高中数学 > 题目详情

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日   期
12月1日
12月2日
12月3日
12月4日
12月5日
温差(°C)
10
11
13
12
8
发芽数(颗)
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程已知回归直线方程是:,其中,
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(1).(2).(3)该研究所得到的线性回归方程是可靠的. 

解析试题分析:(1)设抽到不相邻两组数据为事件,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,
所以 
(2)由数据,求得
由公式,求得
所以y关于x的线性回归方程为
(3)当x=10时,,|22-23|<2;
同样,当x=8时,,|17-16|<2.
所以,该研究所得到的线性回归方程是可靠的. 
考点:本题考查了线性回归直线方程的求解及运用
点评:求线性回归方程的步骤:计算平均数;计算的积,求;计算;将结果代入公式求;用;写出回归直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为表示被招聘的人数。
(1)求三人中至少有一人被招聘的概率;
(2)求随机变量的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:

登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从编号为1,2,3,4,5的五个形状大小相同的球中,任取2个球,求:(1)取到的这2个球编号之和为5的概率;(2)取到的这2个球编号之和为奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
频数
40
20

10

已知分3期付款的频率为0.2,4s店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润。
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及数学期望EY

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为, 求:
(1)甲、乙两人至少有一个人破译出密码的概率;   
(2)两人都没有破译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:

班级
高三()班
高三()班
高二()班
高二()班
人数
12
6
9
9
(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数;
(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)口袋内有)个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
(Ⅰ)求
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望

查看答案和解析>>

同步练习册答案