精英家教网 > 高中数学 > 题目详情

甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为表示被招聘的人数。
(1)求三人中至少有一人被招聘的概率;
(2)求随机变量的分布列和数学期望。

(1)三人中至少有一人被招聘的概率为      
(2)的分布列为


0
1
2
3
P




的数学期望为

解析试题分析:(1)记甲、乙、丙三人被招聘分别为事件,则,     2分
所以三人中至少有一人被招聘的概率为       5分
(2)由题知的取值有0,1,2,3,        6分
       9分
的分布列为


0
1
2
3
P




……………10分
所以的数学期望为         12分
考点:本题主要考查独立事件的概率计算,随机变量分布列及其数学期望。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。独立事件的概率的计算问题,关键是明确事件、用好公式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知连续型随机变量的概率密度函数

(1)    求常数的值,并画出的概率密度曲线;

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高校在2013年考试成绩中100名学生的笔试成绩的频率分布直方图如图所示,

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率;
② 若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为,设第三组中被抽中的学生有名获得优秀,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

哈尔滨市五一期间决定在省妇女儿中心举行中学生“蓝天绿树、爱护环境”围棋比赛,规定如下:
两名选手比赛时每局胜者得1分,负者得0分,比赛进行到有一人比对方多3分或打满7局时停止.
设某学校选手甲和选手乙比赛时,甲在每局中获胜的概率为,且各局胜负相互独立.已知
第三局比赛结束时比赛停止的概率为
(1)求的值;
(2)求甲赢得比赛的概率;
(3)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的一元二次方程x2-2(a-2)xb2+16=0.
(1)若ab是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年10月1日,为庆祝中华人们共和国成立63周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是
(1)求6名志愿者中来自北京大学、清华大学的各几人;
(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;
(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日   期
12月1日
12月2日
12月3日
12月4日
12月5日
温差(°C)
10
11
13
12
8
发芽数(颗)
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程已知回归直线方程是:,其中,
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

同步练习册答案