精英家教网 > 高中数学 > 题目详情

已知关于x的一元二次方程x2-2(a-2)xb2+16=0.
(1)若ab是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.

(1)(2)

解析试题分析:解:(1)基本事件(ab)共有36个,方程有正根等价于a-2>0,16-b2>0,Δ≥0,
a>2,-4<b<4,(a-2)2b2≥16.
设“方程有两个正根”为事件A,则事件A包含的基本事件为(6,1),(6,2),(6,3),(5,3),共4个,
故所求的概率为P(A)=.
(2)试验的全部结果构成区域Ω={(ab)|2≤a≤6,0≤b≤4},
其面积为S(Ω)=16,
设“方程无实根”为事件B,则构成事件B的区域为
B={(ab)|2≤a≤6,0≤b≤4,(a-2)2b2<16},
其面积为S(B)=×π×42=4π,
故所求的概率为P(B)=
考点:古典概型的概率
点评:主要是考查了随机事件的概率的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.
(I)求随机变量的分布列及其数学期望E();
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)袋中装有大小相同的黑球、白球和红球共10个。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是
(1)求袋中各色球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为表示被招聘的人数。
(1)求三人中至少有一人被招聘的概率;
(2)求随机变量的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.
(1)求直线与圆相切的概率;
(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)从1,2,3,4,5五个数中依次取2个数,求这两个数的差的绝对值等于1的概率;
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC边上任取一点M,求 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:

登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

同步练习册答案