精英家教网 > 高中数学 > 题目详情

袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点满足的概率.

(1) ;  (2)

解析试题分析:(1)任取2次,基本事件有:[1,2] [1,3] [1,4] [1,5] [2,3] [2,4] [2,5] [3,4] [3,5] [4,5],记“两数之和为3的倍数”为事件A,则事件A中含有:[1,2] [1,5] [2,4] [4,5]共4个基本事件,所以
(2) 有放回的取出2个,基本事件有:
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)
(4,1) (4,2) (4,3) (4,4) (4,5)
(5,1) (5,2) (5,3) (5,4) (5,5)
记“点满足”为事件,则包含:(1,1) (1,2) (1,3)(2,1) (2,2) (3,1) (3,2)共7个基本事件 ,所以
考点:本题考查了古典概型的求法
点评:对于古典概型的概率的计算,首先要分清基本事件总数及事件A包含的基本事件数,分清的方法常用列表法、画图法、列举法、列式计算等方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某大学高等数学老师这学期分别用两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:

(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”

 
甲班
乙班
合计
优秀
 
 
 
不优秀
 
 
 
合计
 
 
 
下面临界值表仅供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手).
(1)求甲、乙两位选手都进入第三轮比赛的概率;
(2)求甲选手在第三轮被淘汰的的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立参加某企业的招聘考试,根据三人的专业知识、应试表现、工作经验等综合因素,三人被招聘的概率依次为表示被招聘的人数。
(1)求三人中至少有一人被招聘的概率;
(2)求随机变量的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不透明的袋中有8张大小和形状完全相同的卡片,卡片上分别写有1,1,2,2,3,3,.现 从中任取3张卡片,假设每张卡片被取出的可能性相同.
(I)求取出的三张卡片中至少有一张字母卡片的概率;
(Ⅱ)设表示三张卡片上的数字之和.当三张卡片中含有字母时,则约定:有一个字母和二个相同数字时为这二个数字之和,否则,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人在罚球线互不影响地投球,命中的概率分别为,投中得1分,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;
(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为, 求:
(1)甲、乙两人至少有一个人破译出密码的概率;   
(2)两人都没有破译出密码的概率.

查看答案和解析>>

同步练习册答案