精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2,g(x)=alnx+bx(a>0).
(Ⅰ)若f(1)=g(1),f'(1)=g'(1),求F(x)=f(x)-g(x)的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,说明理由.
(Ⅲ)设G(x)=f(x)+2-g(x)有两个零点x1,x2,且x1,x0,x2成等差数列,试探究G'(x0)值的符号.
分析:(1)由f(1)=g(1),f′(1)=g′(1)得到a与b的值,因为F(x)=f(x)-g(x)求出导函数讨论在区间上的增减性得到函数的极值即可;
(2)因f(x)与g(x)有一个公共点(1,1),而函数f(x)=x2在点(1,1)的切线方程为y=2x-1,
下面验证
f(x)≥2x-1
g(x)≤2x-1
都成立即可.由x2-2x+1≥0,得x2≥2x-1,知f(x)≥2x-1恒成立.设h(x)=lnx+x-(2x-1),即h(x)=lnx-x+1,易知其在(0,1)上递增,在(1,+∞)上递减,所以h(x)=lnx+x-(2x-1)的最大值为h(1)=0,所以lnx+x≤2x-1恒成立.故存在;
(3)因为G(x)=f(x)+2-g(x)有两个零点x1,x2,把两个零点代入到G(x)中,得一式子,然后求出导函数讨论两个零点的大小得到G'(x0)值的符号为正.
解答:解:(1)由f(1)=g(1),f′(1)=g′(1)得
b=1
a+b=2
,解得a=b=1则F(x)=f(x)-g(x)=x2-lnx-x,F′(x)=2x-
1
x
-1
x=1或x=-
1
2
,当x<-
1
2
或x>1时,f′(x)>0,函数为增函数;当-
1
2
<x<1时,f′(x)<0,函数为减函数.
得到F(x)极小值=F(1)=0;
(2)因f(x)与g(x)有一个公共点(1,1),而函数f(x)=x2在点(1,1)的切线方程为y=2x-1,
下面验证
f(x)≥2x-1
g(x)≤2x-1
都成立即可.由x2-2x+1≥0,得x2≥2x-1,知f(x)≥2x-1恒成立.设h(x)=lnx+x-(2x-1),即h(x)=lnx-x+1,易知其在(0,1)上递增,在(1,+∞)上递减,所以h(x)=lnx+x-(2x-1)的最大值为h(1)=0,所以lnx+x≤2x-1恒成立.故存在这样的k和m,且k=2,m=-1.
(3)G′(x0)的符号为正,理由为:因为G(x)=x2+2-alnx-bx有两个零点x1,x2,则有
x12+2-alnx1-bx1=0
x22+2-alnx2-bx2=0
,两式相减得x22-x12-a(lnx2-lnx1)-b(x2-x1)=0,即x2+x1-b=
a(lnx2-lnx1
x2-x1

于是G′(x0)=2x0-
a
x0
-b=(x1+x2-b)-
2a
x1+x2
=
a(lnx2-lnx1
x2-x1
-
2a
x1+x2
=
a
x2-x1
[ln
x2
x1
-
2(x2-x1
x1+x2
]

=
a
x2-x1
[ln
x2
x1
-
2(
x2
x1
-1)
1+
x2
x1
]

①当0<x1<x2时,令
x2
x1
=t,则t>1,且u′(t)=
1
t
-
4
(1+t)2
=
(1-t)2
t(1+t)2
>0,则u(t)=lnt-
2(t-1)
1+t
在(1,+∞)上为增函数,
而u(1)=0,所以u(t)>0,即lnt-
2(t-1)
1+t
>0,又因为a>0,x2-x1>0
所以G′(x0)>0;
②当0<x2<x1时,同理可得:G′(x0)>0
综上所述:G′(x0)的符号为正.
点评:考查学生利用导数研究函数极值的能力,利用导数求闭区间上函数极值的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案