已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值.
(1)或;(2).
解析试题分析:(1)因为点在线段上,所以可假设点的坐标,又根据,所以可求出点的坐标,同时要检验一下使得点符合在线段上,再通过假设直线的斜率,利用点到直线的距离等于圆的半径即可求出直线的斜率,从而得到切线方程;(2)因为经过三点的圆的圆心是,求线段 (为坐标原点)长,通过假设点的坐标即可表示线段的中点的坐标(因为), 根据两点间的距离公式写出的表达式,接着关键是根据的范围讨论,因为的值受的大小决定的,要分三种情况讨论即i) ;ii) ;iii) ;分别求出三种情况的最小值即为所求的结论.
试题解析:(1)设
解得或(舍去)
由题意知切线的斜率存在,设斜率为
所以直线的方程为,即
直线与圆相切,,解得或
直线的方程是或 6分
(2)设
与圆相切于点
经过三点的圆的圆心是线段的中点
的坐标是
设
当,即时,
当,即时,
当,即时,
则
科目:高中数学 来源: 题型:解答题
如图所示,已知直线l:y=x,圆C1的圆心为(3,0),且经过点A(4,1).
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点B、D分别为圆C1、C2上任意一点,求|BD|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,求点的坐标;
(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;
(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值.
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=+,求||的最小值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+m,m∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知的三个顶点,,,其外接圆为.
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com