精英家教网 > 高中数学 > 题目详情
已知圆C1x2+y2-2x-4y+4=0与直线l:x+2y-4=0相交于A,B两点.
(Ⅰ)求弦AB的长;
(Ⅱ)若圆C2经过E(1,-3),F(0,4),且圆C2与圆C1的公共弦平行于直线2x+y+1=0,求圆C2的方程.
分析:(Ⅰ)求出圆心到直线l的距离,再利用勾股定理即可求出弦AB的长;
(II)设圆C2的方程为x2+y2+Dx+Ey+F=0,与圆C1x2+y2-2x-4y+4=0方程相减,可得公共弦所在的直线方程为:(D+2)x+(E+2)y+F=0,利用圆C2与圆C1的公共弦平行于直线2x+y+1=0,可得D=2E+6,再根据圆C2经过E(1,-3),F(0,4),可构建方程组,从而可求圆C2的方程.
解答:解:(Ⅰ)圆心到直线l的距离 d=
5
5
,(2分)
所以|AB|=2
1-
1
5
=
4
5
5
.                     (4分)
(II)设圆C2的方程为x2+y2+Dx+Ey+F=0,
∵圆C1x2+y2-2x-4y+4=0
∴两方程相减,可得公共弦所在的直线方程为:(D+2)x+(E+4)y+F-4=0,
∵圆C2与圆C1的公共弦平行于直线2x+y+1=0,
D+2
2
=
E+4
1
,即D=2E+6.                        (6分)
又因为圆C2经过E(1,-3),F(0,4),
所以
1+9+D-3E+F=0
16+4E+F=0
D=2E+6
D=6
E=0
F=-16.

所以圆C2的方程为x2+y2+6x-16=0.(8分)
点评:本题考查圆中的弦长问题,考查两圆的公共弦,考查圆的方程,解题的关键是利用圆的特征,确定公共弦的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=2,直线l与圆C1相切于点A(1,1);圆C2的圆心在直线x+y=0上,且圆C2过坐标原点.
(1)求直线l的方程;
(2)若圆C2被直线l截得的弦长为8,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1x2+y2=10与圆C2x2+y2+2x+2y-14=0
(1)求证:圆C1与圆C2相交;
(2)求两圆公共弦所在直线的方程;
(3)求经过两圆交点,且圆心在直线x+y-6=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+(y+5)2=5,设圆C2为圆C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为
2
?荐存在,求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,已知圆C1x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A、B,定点M坐标为(0,-1),直线MA,MB分别与C1相交于点D、E.
(1)求证:MA⊥MB.
(2)记△MAB,△MDE的面积分别为S1、S2,若
S1S2
,求λ的取值范围.

查看答案和解析>>

同步练习册答案