精英家教网 > 高中数学 > 题目详情

已知点,曲线上的动点满足,定点,由曲线外一点向曲线引切线,切点为,且满足.

(1)求线段长的最小值;

(2)若以为圆心所作的圆与曲线有公共点,试求半径取最小值时圆的标准方程.

 

【答案】

(1);(2).

【解析】

试题分析:本题主要考查圆的标准方程和几何性质、直线的方程、向量的点乘、平面内两点间距离公式等基础知识.考查数形结合的数学思想.考查运算求解能力、综合分析和解决问题的能力.第一问,利用向量的点乘求出点的轨迹方程,数形结合找出,所以,然后配方法求最值;第二问,利用两圆的位置关系列出不等式,用配方法求最值,得到圆心和半径,写出圆的标准方程.

试题解析:(Ⅰ)设,则

点轨迹(曲线)方程为,即曲线.      2分

为切点,,由勾股定理有:

又由已知,故

即:

化简得实数间满足的等量关系为:,即.(4分)

故当时,即线段长的最小值为     7分

(另法)由点在直线上.

,即求点到直线的距离.

(7分)

(Ⅱ)设的半径为,∵有公共点,的半径为1,

.      8分

,     9分

故当时,.            10分

此时,.        11分

得半径取最小值时的标准方程为.          13分

(另法)有公共点,半径最小时为与外切(取小者)的情形,而这些半径的最小值为圆心到直线的距离减去1,圆心为过原点与垂直的直线的交点

,(10分)

解方程组,得.即

∴所求标准方程为.(13分)

考点:1.向量的点乘;2.圆的标准方程;3.勾股定理;4.配方法求最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,一曲线上的动点距离之差为6,则双曲线的方程为        

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期5月高考冲刺文科数学(解析版) 题型:解答题

(本小题满分12分)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:解答题

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省铁岭六校高三上学期第三次联考数学理卷 题型:解答题

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点 任作一条与轴不垂直的直线,它与曲线交于两点。

   (1)求曲线的方程;

   (2)试证明:在轴上存在定点,使得总能被轴平分。

 

查看答案和解析>>

同步练习册答案