精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,记an与an+1的等差中项为kn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,求数列{bn}的前n项和Tn
(Ⅲ)设集合,等差数列{cn}的任意一项cn∈A∩B,其中c1是A∩B中的最小数,且110<c10<115,求{cn}的通项公式.
【答案】分析:(I)根据点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,可得,再写一式,两式相减,即可求得数列{an}的通项公式;
(II)先确定数列的通项,再利用错位相减法求数列的和;
(III)先确定A∩B=B,再确定{cn}是公差为4的倍数的等差数列,利用110<c10<115,可得c10=114,由此可得{cn}的通项公式.
解答:解:(I)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,∴
当n≥2时,an=Sn-Sn-1=2n+1.…(2分)
当n=1时,a1=S1=3满足上式,
所以数列{an}的通项公式为an=2n+1.…(3分)
(II)∵kn为an与an+1的等差中项
…(4分)


由①×4,得
①-②得:=
…(8分)
(III)∵
∴A∩B=B
∵cn∈A∩B,c1是A∩B中的最小数,∴c1=6.
∵{cn}是公差为4的倍数的等差数列,∴.…(10分)
又∵110<c10<115,∴,解得m=27.
所以c10=114,
设等差数列的公差为d,则,…(12分)
∴cn=6+(n+1)×12=12n-6,
∴cn=12n-6.…(13分)
点评:本题考查数列与函数的关系,考查数列的通项与求和,正确运用求和公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案