精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2+2x+alnx,当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,则实数a的取值范围是________.

a≤2
分析:由f(x)的解析式化简不等式,得到当t≥1时,t2≥2t-1,∴.即t>1时,恒成立即要求出 的最小值即可得到a的范围.
解答:∵f(x)=x2+2x+alnx,∴
当t≥1时,t2≥2t-1,∴.即t>1时,恒成立.又易证ln(1+x)≤x在x>-1上恒成立,
在t>1上恒成立.当t=1时取等号,
∴当t≥1时,,∴由上知a≤2.故实数a的取值范围是(-∞,2].
点评:本题考查函数恒成立时所取的条件.考查考生的运算、推导、判断能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案