精英家教网 > 高中数学 > 题目详情
11.已知数列{an}是等比数列,a1=$\frac{\sqrt{2}}{2}$,a4=2,则a1+a2+…+a10等于(  )
A.$\frac{31\sqrt{2}}{2}$+31B.31$\sqrt{2}$+31C.80D.$\frac{5\sqrt{2}}{2}$+80

分析 先求出公比,再根据等比数列的求和公式计算即可.

解答 解:数列{an}是等比数列,设公比为q,a1=$\frac{\sqrt{2}}{2}$,a4=2,
∴q3=$\frac{{a}_{4}}{{a}_{1}}$=$\frac{2}{\frac{\sqrt{2}}{2}}$=2$\sqrt{2}$=($\sqrt{2}$)3
∴q=$\sqrt{2}$,
∴a1+a2+…+a10=$\frac{\frac{\sqrt{2}}{2}(1-(\sqrt{2})^{10})}{1-\sqrt{2}}$=$\frac{31\sqrt{2}}{2}$+31,
故选:A

点评 本题考查了等比数列的求和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图是某个几何体的三视图,则这个几何体体积是(  )
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.巳知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf'(x)>0成立,若$a={4^{0.2}}f({{4^{0.2}}}),b=({{{log}_4}3})f({{{log}_4}3}),c=({{{log}_4}\frac{1}{16}})f({{{log}_4}\frac{1}{16}})$,则a,b,c的大小关系是c>a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,?n∈N*满足$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$,且a1=1,正项数列{bn}满足bn+12-bn+1=bn2+bn(n∈N*),其前7项和为42.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行排列,得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求这个新数列的前n项和Pn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={x|-4<x<1},B={x|x2-x-6<0},则A∪B等于(  )
A.(-3,1)B.(-2,1)C.(-4,2)D.(-4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)=-x,g(f(x))=2x+x2,则g(-1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|(x-6)(3x+8)<0},B={x|y=$\sqrt{x+1}$},则A∩B等于(  )
A.[-1,6)B.(-1,6)C.(-$\frac{8}{3}$,-1]D.(-$\frac{8}{3}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>y,则下列不等式一定成立的是(  )
A.$\frac{1}{x}<\frac{1}{y}$B.log2(x-y)>0C.x3<y3D.${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的顶点到直线l:y=x的距离分别为$\frac{{\sqrt{6}}}{2},\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C1的离心率;
(2)过圆O:x2+y2=4上任意一点P作椭圆C1的两条切线PM和PN分别与圆交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

同步练习册答案