19£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬?n¡ÊN*Âú×ã$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$£¬ÇÒa1=1£¬ÕýÏîÊýÁÐ{bn}Âú×ãbn+12-bn+1=bn2+bn£¨n¡ÊN*£©£¬Æäǰ7ÏîºÍΪ42£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Áîcn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Èô¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐTn¡Ý2n+a£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©½«ÊýÁÐ{an}£¬{bn}µÄÏî°´ÕÕ¡°µ±nÎªÆæÊýʱ£¬an·ÅÔÚÇ°Ãæ£»µ±nΪżÊýʱ£¬bn·ÅÔÚÇ°Ãæ¡±µÄÒªÇó½øÐÐÅÅÁУ¬µÃµ½Ò»¸öеÄÊýÁУºa1£¬b1£¬b2£¬a2£¬a3£¬b3£¬b4£¬a4£¬a5£¬b5£¬b6£¬¡­£¬ÇóÕâ¸öÐÂÊýÁеÄǰnÏîºÍPn£®

·ÖÎö £¨1£©ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬?n¡ÊN*Âú×ã$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$£¬ÇÒa1=1£¬¿ÉµÃÊýÁÐ$\{\frac{{S}_{n}}{n}\}$ÊǵȲîÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ$\frac{1}{2}$£®ÀûÓÃͨÏʽ¿ÉµÃSn£®ÀûÓõÝÍÆ¹ØÏµ¼´¿ÉµÃ³öan£®ÕýÏîÊýÁÐ{bn}Âú×ãbn+12-bn+1=bn2+bn£¨n¡ÊN*£©£¬»¯Îª£º£¨bn+1+bn£©£¨bn+1-bn£©=bn+1+bn£¬¿ÉµÃbn+1-bn=1£®ÔÙÀûÓõȲîÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃ³ö£®
£¨2£©cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$=2+2$£¨\frac{1}{n}-\frac{1}{n+2}£©$£¬ÀûÓÃÁÑÏîÇóºÍ·½·¨¡¢ÊýÁеĵ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨3£©n=2kʱ£¬Pn=P2k=£¨a1+a2+¡­+ak£©+£¨b1+b2+¡­+bk£©£®n=2k-1ʱ£¬2k±»2Õû³ý¶ø²»Äܱ»4Õû³ýʱ£¬Pn=P2k-bk£®2k±»4Õû³ýʱ£¬Pn=P2k-ak£®

½â´ð ½â£º£¨1£©ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬?n¡ÊN*Âú×ã$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$£¬ÇÒa1=1£¬
¡àÊýÁÐ$\{\frac{{S}_{n}}{n}\}$ÊǵȲîÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ$\frac{1}{2}$£®
¡à$\frac{{S}_{n}}{n}$=1+$\frac{1}{2}$£¨n-1£©£¬½âµÃSn=$\frac{n£¨n+1£©}{2}$£®
¡àn¡Ý2ʱ£¬an=Sn-Sn-1=$\frac{n£¨n+1£©}{2}$-$\frac{n£¨n-1£©}{2}$=n£¬n=1ʱҲ³ÉÁ¢£®
¡àan=n£®
ÕýÏîÊýÁÐ{bn}Âú×ãbn+12-bn+1=bn2+bn£¨n¡ÊN*£©£¬»¯Îª£º£¨bn+1+bn£©£¨bn+1-bn£©=bn+1+bn£¬
¡àbn+1-bn=1£®
¡àÊýÁÐ{bn}ÊǵȲîÊýÁУ¬¹«²îΪ1£®
¡ßÆäǰ7ÏîºÍΪ42£¬¡à7b1+$\frac{7¡Á6}{2}$¡Á1=42£¬½âµÃb1=3£®
¡àbn=3+n-1=n+2£®
£¨2£©cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$=2+2$£¨\frac{1}{n}-\frac{1}{n+2}£©$£¬
¡àÊýÁÐ{cn}µÄǰnÏîºÍTn=2n+2$[£¨1-\frac{1}{3}£©+£¨\frac{1}{2}-\frac{1}{4}£©+£¨\frac{1}{3}-\frac{1}{5}£©$+¡­+$£¨\frac{1}{n-1}-\frac{1}{n+1}£©$+$£¨\frac{1}{n}-\frac{1}{n+2}£©]$
=2n+2$£¨1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}£©$=2n+2$£¨\frac{3}{2}-\frac{1}{£¨n+1£©£¨n+2£©}£©$£¬
Tn¡Ý2n+a£¬»¯Îª£º2$£¨\frac{3}{2}-\frac{1}{£¨n+1£©£¨n+2£©}£©$¡Ýa£¬¡àa¡Ü$\frac{8}{3}$£®
¡àʵÊýaµÄȡֵ·¶Î§ÊÇ$£¨-¡Þ£¬\frac{8}{3}]$£®
£¨3£©n=2kʱ£¬Pn=P2k=£¨a1+a2+¡­+ak£©+£¨b1+b2+¡­+bk£©
=$\frac{k£¨k+1£©}{2}$+$\frac{k£¨3+k+2£©}{2}$=k2+3k=$£¨\frac{n}{2}£©^{2}$+3¡Á$\frac{n}{2}$=$\frac{{n}^{2}+6n}{4}$£®
n=2k-1ʱ£¬2k±»2Õû³ý¶ø²»Äܱ»4Õû³ýʱ£¬Pn=P2k-bk=$\frac{£¨2k£©^{2}+6¡Á2k}{4}$-£¨k+2£©=k2+2k-2£®
2k±»4Õû³ýʱ£¬Pn=P2k-ak=$\frac{£¨2k£©^{2}+6¡Á2k}{4}$-k=k2+2k£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¼°ÆäÐÔÖÊ¡¢ÁÑÏîÇóºÍ¡¢ÊýÁеĵÝÍÆ¹ØÏµ¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=-1+sin¦È\end{array}\right.£¨¦È$Ϊ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄÔ²Ðĵļ«×ø±êΪ£¨¡¡¡¡£©
A£®$£¨1£¬-\frac{¦Ð}{2}£©$B£®£¨1£¬¦Ð£©C£®£¨0£¬-1£©D£®$£¨1£¬\frac{¦Ð}{2}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³µ¥Î»Ô±¹¤°´ÄêÁä·ÖΪA£¬B£¬CÈý×飬ÆäÈËÊýÖ®±ÈΪ5£º4£º1£¬ÏÖÓ÷ֲã³éÑùµÄ·½·¨´Ó×ÜÌåÖгéȡһ¸öÈÝÁ¿Îª10µÄÑù±¾£¬ÒÑÖªC×éÖÐij¸öÔ±¹¤±»³éµ½µÄ¸ÅÂÊÊÇ$\frac{1}{9}$£¬Ôò¸Ãµ¥Î»Ô±¹¤×ÜÊýΪ£¨¡¡¡¡£©
A£®110B£®10C£®90D£®80

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=alnx+$\frac{1}{x}$-bx+1£®
£¨1£©Èô2a-b=4£¬Ôòµ±a£¾2ʱ£¬ÌÖÂÛf£¨x£©µ¥µ÷ÐÔ£»
£¨2£©Èôb=-1£¬F£¨x£©=f£¨x£©-$\frac{5}{x}$£¬ÇÒµ±a¡Ý-4ʱ£¬²»µÈʽF£¨x£©¡Ý2ÔÚÇø¼ä[1£¬4]ÉÏÓн⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èôf£¨x£©ÎªÆæº¯Êý£¬ÇÒx0ÊÇy=f£¨x£©-exµÄÒ»¸öÁãµã£¬ÔòÏÂÁк¯ÊýÖУ¬-x0Ò»¶¨ÊÇÆäÁãµãµÄº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=f£¨-x£©•e-x-1B£®y=f£¨x£©•ex+1C£®y=f£¨x£©•ex-1D£®y=f£¨-x£©•ex+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªµãA£¨2£¬$\frac{¦Ð}{2}$£©£¬B£¨1£¬-$\frac{¦Ð}{3}$£©£¬Ô²OµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£®
£¨¢ñ£©ÇóÖ±ÏßABµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóÔ²OµÄÖ±½Ç×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬a1=$\frac{\sqrt{2}}{2}$£¬a4=2£¬Ôòa1+a2+¡­+a10µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{31\sqrt{2}}{2}$+31B£®31$\sqrt{2}$+31C£®80D£®$\frac{5\sqrt{2}}{2}$+80

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{3x-y+2¡Ý0}\\{x-2y-1¡Ü0}\\{2x+y-2¡Ü0}\end{array}\right.$£¬Ôòz=x-3yµÄ×î´óֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³µ¥Î»¸½½üÖ»Óмף¬ÒÒÁ½¸öÁÙʱͣ³µ³¡£¬ËüÃǸ÷ÓÐ50¸ö³µÎ»£¬ÎªÁË·½±ãÊÐÃñÍ£³µ£¬Ä³»¥ÁªÍøÍ£³µ¹«Ë¾¶ÔÕâÁ½¸öÍ£³µ³¡ÔÚ¹¤×÷ÈÕijЩ¹Ì¶¨Ê±¿ÌµÄÊ£ÓàÍ£³µÎ»½øÐмǼ£¬ÈçÏÂ±í£º
ʱ¼ä8µã10µã12µã14µã16µã18µã
Í£³µ³¡¼×1031261217
Í£³µ³¡ÒÒ13432619
Èç¹û±íÖÐijһʱ¿ÌÍ£³µ³¡Ê£ÓàÍ£³µÎ»ÊýµÍÓÚ×ܳµÎ»ÊýµÄ10%£¬ÄÇôµ±³µÖ÷Çý³µµÖ´ïµ¥Î»¸½½üʱ£¬¸Ã¹«Ë¾½«»áÏò³µÖ÷·¢³öÍ£³µ³¡±¥ºÍ¾¯±¨£®
£¨¢ñ£©¼ÙÉèij³µÖ÷ÔÚÒÔÉÏÁù¸öʱ¿ÌµÖ´ïµ¥Î»¸½½üµÄ¿ÉÄÜÐÔÏàͬ£¬ÇóËûÊÕµ½¼×Í£³µ³¡±¥ºÍ¾¯±¨µÄ¸ÅÂÊ£»
£¨¢ò£©´ÓÕâÁù¸öʱ¿ÌÖÐÈÎѡһ¸öʱ¿Ì£¬Çó¼×Í£³µ³¡±ÈÒÒÍ£³µ³¡Ê£Ó೵λÊýÉٵĸÅÂÊ£»
£¨¢ó£©µ±Í£³µ³¡ÒÒ·¢³ö±¥ºÍ¾¯±¨Ê±£¬ÇóÍ£³µ³¡¼×Ò²·¢³ö±¥ºÍ¾¯±¨µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸