精英家教网 > 高中数学 > 题目详情
10.某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,已知C组中某个员工被抽到的概率是$\frac{1}{9}$,则该单位员工总数为(  )
A.110B.10C.90D.80

分析 按分层抽样应该从C组中抽取1人,设该单位C员工的人数为n,由C组中某个员工被抽到的概率是$\frac{1}{9}$,问题得以解决

解答 解:C组中被抽到的人数为10×$\frac{1}{5+4+1}$=1人,
C组中某个员工被抽到的概率是$\frac{1}{9}$,
设该单位C员工的人数为n,则$\frac{1}{n}$=$\frac{1}{9}$,
解得n=9,
则该单位员工总数为9×(1+4+5)=90
故选C.

点评 本题考查古典概型及其概率的计算公式,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)证明:DC⊥AB;
(2)若C在平面ABDE内的正投影为H,求点H到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是某个几何体的三视图,则这个几何体体积是(  )
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinxsin$(\frac{π}{2}-x)+\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-a(a∈R)与函数F(x)=x+$\frac{2}{x}$的图象没有交点.
(1)求a的取值范围;
(2)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为数列{an}的前n项和,且Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.巳知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf'(x)>0成立,若$a={4^{0.2}}f({{4^{0.2}}}),b=({{{log}_4}3})f({{{log}_4}3}),c=({{{log}_4}\frac{1}{16}})f({{{log}_4}\frac{1}{16}})$,则a,b,c的大小关系是c>a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,?n∈N*满足$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$,且a1=1,正项数列{bn}满足bn+12-bn+1=bn2+bn(n∈N*),其前7项和为42.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$,数列{cn}的前n项和为Tn,若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行排列,得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求这个新数列的前n项和Pn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>y,则下列不等式一定成立的是(  )
A.$\frac{1}{x}<\frac{1}{y}$B.log2(x-y)>0C.x3<y3D.${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$

查看答案和解析>>

同步练习册答案