精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=sinxsin$(\frac{π}{2}-x)+\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间.

分析 (Ⅰ)利用三角函数恒等变换的应用化简可得函数解析式为f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,利用周期公式即可计算得解.
(Ⅱ)由于f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得单调递增区间.

解答 解:(Ⅰ)∵f(x)=sinxsin$(\frac{π}{2}-x)+\sqrt{3}{cos^2}$x
=$\frac{1}{2}$sin2x+$\sqrt{3}$×$\frac{1+cos2x}{2}$
=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(Ⅱ)∵f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∴令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
∴可得f(x)的单调递增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

点评 本题主要考查了三角函数恒等变换的应用,周期公式,正弦函数的单调性,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若$(1+{y^3}){(x-\frac{1}{{{x^2}y}})^n}(n∈{N_+})$的展开式中存在常数项,则常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的圆心的极坐标为(  )
A.$(1,-\frac{π}{2})$B.(1,π)C.(0,-1)D.$(1,\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值为10,则m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=(1-i)(i-2),则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的面积为S,(a2+b2)tanC=8S,则$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,已知C组中某个员工被抽到的概率是$\frac{1}{9}$,则该单位员工总数为(  )
A.110B.10C.90D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{1}{x}$-bx+1.
(1)若2a-b=4,则当a>2时,讨论f(x)单调性;
(2)若b=-1,F(x)=f(x)-$\frac{5}{x}$,且当a≥-4时,不等式F(x)≥2在区间[1,4]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足约束条件$\left\{\begin{array}{l}{3x-y+2≥0}\\{x-2y-1≤0}\\{2x+y-2≤0}\end{array}\right.$,则z=x-3y的最大值为2.

查看答案和解析>>

同步练习册答案