精英家教网 > 高中数学 > 题目详情
20.如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)证明:DC⊥AB;
(2)若C在平面ABDE内的正投影为H,求点H到平面BCD的距离.

分析 (1)取AB的中点O,连OC,OD,证明:AB⊥平面DOC,即可证明DC⊥AB;
(2)取OD的中点H,连结CH,由VO-BCD=VB-OCD得点H到平面BCD的距离.

解答 解:(1)证明:如图,取AB的中点O,连OC,OD,
因为△ABC是边长为2的正三角形,所以$AB⊥OC,OC=\sqrt{3}$,
又四边形ABDE是菱形,∠DBA=60°,所以△DAB是正三角形,
所以$AB⊥OD,OD=\sqrt{3}$,
而OD∩OC=O,所以AB⊥平面DOC,
所以AB⊥CD;
(2)取OD的中点H,连结CH,
由(1)知OC=CD,所以AB⊥ODAB⊥平面DOC,所以平面DOC⊥平面ABD,
而平面DOC⊥平面ABD,平面DOC与平面ABD的交线为OD,
所以CH⊥平面ABD,即点H是D在平面ABD内的正投影,
设点H到平面BCD的距离为d,则点O到平面BCD距离为2d,
因为在△BCD中,$BC=BD=2,CD=\sqrt{3}$,
得${S_{△BCD}}=\frac{1}{2}•\sqrt{3}•\sqrt{{2^2}-{{(\frac{{\sqrt{3}}}{2})}^2}}=\frac{1}{2}•\sqrt{3}•\frac{{\sqrt{13}}}{2}$=$\frac{1}{2}•\sqrt{3}•\sqrt{{2^2}-{{(\frac{{\sqrt{3}}}{2})}^2}}=\frac{{\sqrt{39}}}{4}$,
在△OCD中,$OC=OD=CD=\sqrt{3}$,得${S_{△OCD}}=\frac{1}{2}•\sqrt{3}•\sqrt{3}•sin{60°}=\frac{{3\sqrt{3}}}{4}$,
所以由VO-BCD=VB-OCD得$\frac{1}{3}{S_{△BCD}}•d=\frac{1}{3}{S_{△OCD}}•OB$,
即$\frac{1}{3}•\frac{{\sqrt{39}}}{4}2d=\frac{1}{3}•\frac{{3\sqrt{3}}}{4}•1$,
解得$d=\frac{{3\sqrt{13}}}{26}$,所以H到平面BCD的距离$\frac{{3\sqrt{13}}}{26}$.

点评 本题考查线面垂直的判定与性质,考查H到平面BCD的距离,考查体积法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大小;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC边上的中线AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$(1+{y^3}){(x-\frac{1}{{{x^2}y}})^n}(n∈{N_+})$的展开式中存在常数项,则常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-x,g(x)=ex-ax-1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-2x)1nx+ax2+2,g(x)=f(x)-x-2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若a>0且函数g(x)有且仅有一个零点,求实数a的值;
(Ⅲ)在(Ⅱ)的条件下,若e-2<x<e时,g(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+3}$,若f′(1)=$\frac{1}{2}$,则实数a的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的圆心的极坐标为(  )
A.$(1,-\frac{π}{2})$B.(1,π)C.(0,-1)D.$(1,\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,已知C组中某个员工被抽到的概率是$\frac{1}{9}$,则该单位员工总数为(  )
A.110B.10C.90D.80

查看答案和解析>>

同步练习册答案