精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大小;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC边上的中线AM的长.

分析 (Ⅰ)根据正弦定理和两角和的正弦公式即可求出;
(Ⅱ)利用余弦定理即可求出.

解答 解:(Ⅰ)∵acosC=b-$\frac{{\sqrt{3}}}{2}$c,
由正弦定理可得sinAcosC=sinB-$\frac{\sqrt{3}}{2}$sinC,
∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴cosAsinC=$\frac{\sqrt{3}}{2}$sinC,
∵sinC≠0,
∴cosA=$\frac{\sqrt{3}}{2}$,
∴A=$\frac{π}{6}$,
(Ⅱ)由A=B=$\frac{π}{6}$,则C=$\frac{2π}{3}$,
∴BC=AC=4,AB=4$\sqrt{3}$,
∴AM=2,
由余弦定理可得AM2=BM2+AB2-2BM•ABcosB=4+48-16$\sqrt{3}$•$\frac{\sqrt{3}}{2}$=28,
∴AM=2$\sqrt{7}$.

点评 本题考查了正弦定理、余弦定理,两角和的正弦公式和三角形的内角和定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.二项式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展开式中,$\sqrt{x}$项的系数是(  )
A.$\frac{15}{2}$B.-$\frac{15}{2}$C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足$\sqrt{x}{f^'}(x)<\frac{1}{2}$,则下列不等式中,一定成立的是(  )
A.f(9)-1<f(4)<f(1)+1B.f(1)+1<f(4)<f(9)-1C.f(5)+2<f(4)<f(1)-1D.f(1)-1<f(4)<f(5)+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足an+1=(-1)n(3an-1+1),n≥2,n∈N*,且a1=a2=1,Sn是数列{an}的前n项和,则S16=$\frac{7}{16}({3}^{8}-1)$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知各项均为正数的等比数列{an}满足a1=1,a1+a3+a5=21,则a2+a4+a6=(  )
A.-42B.84C.42D.168

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,其左、右焦点为F1,F2,P为短轴的一个端点,△PF1F2的面积等于$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点A(x1,y1),B(x2,y2)是椭圆C上的任意两点,O是坐标原点.
(ⅰ)若kOA•kOB=-$\frac{1}{4}$,求证:x12+x22为定值.
(ⅱ)若以AB为直径的圆经过点O,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过O点作直线l的垂线所得的垂足称为点P在直线l上的射影,由区域$\left\{\begin{array}{l}{y≤2-x}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$内的点在直线l:λ(2x-3y-9)+μ(x+y-2)=0上的射影构成线段记为MN,则|MN|的长度的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)证明:DC⊥AB;
(2)若C在平面ABDE内的正投影为H,求点H到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是某个几何体的三视图,则这个几何体体积是(  )
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

查看答案和解析>>

同步练习册答案