精英家教网 > 高中数学 > 题目详情
16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,其左、右焦点为F1,F2,P为短轴的一个端点,△PF1F2的面积等于$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点A(x1,y1),B(x2,y2)是椭圆C上的任意两点,O是坐标原点.
(ⅰ)若kOA•kOB=-$\frac{1}{4}$,求证:x12+x22为定值.
(ⅱ)若以AB为直径的圆经过点O,求△OAB面积的最大值.

分析 (Ⅰ)由已知列式,解得a2,b2的值,可得椭圆方程;
(Ⅱ)(ⅰ)设直线AB的方程,代入椭圆方程,由韦达定理及直线的斜率求得2m2=4k2+1,由x12+x22=(x1+x22-2x1x2=4;
(ⅱ)由$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,根据向量数量积的坐标运算,求得m2=$\frac{4+4{k}^{2}}{5}$,利用点到直线的距离公式,弦长公式,利用基本不等式的性质即可求得△OAB面积的最大值.

解答 解:(Ⅰ)由已知可得:$\left\{\begin{array}{l}{\frac{1}{2}•2c•b=\sqrt{3}}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a2=4,b3=1,c2=3.
∴椭圆方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(Ⅱ)证明:(ⅰ)点A(x1,y1),B(x2,y2)是椭圆C上的任意两点,
则kOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}=-\frac{1}{4}$,则x1x2+4y1y2=0.
当直线MN的斜率存在时,设直线AB的方程为y=kx+m.
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得:(1+4k2)x2+8kmx+4m2-4=0.△>0.
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
∴(1+4k2)x1x2+4km(x1+x2)+4m2=0,
∴4m2-4-$\frac{32{k}^{2}{m}^{2}}{1+4{k}^{2}}$+4m2=0,
化为2m2=4k2+1.
∴x12+x22=(x1+x22-2x1x2=$\frac{64{k}^{2}{m}^{2}}{(1+4{k}^{2})^{2}}$-2×$\frac{4{m}^{2}-4}{1+4{k}^{2}}$=4,为定值.
当直线AB的斜率不存在时,也适合.
综上可得:x12+x22=4为定值.
(ⅱ)以AB为直径的圆经过点O,则$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,即$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
由(ⅰ)可知$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=(1+4k2)x1x2+km(x1+x2)+m2=$\frac{5{m}^{2}-4-4{k}^{2}}{1+4{k}^{2}}$=0,即m2=$\frac{4+4{k}^{2}}{5}$,
∴原点O到直线AB的距离$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{\frac{4+4{k}^{2}}{5}}}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
则原点O到直线AB的距离为定值$\frac{2\sqrt{5}}{5}$,
当直线AB的斜率不存在时,丨AB丨=$\frac{4\sqrt{5}}{5}$,
当直线AB的斜率存在时,丨AB丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4}{\sqrt{5}}$$\sqrt{1+\frac{9{k}^{2}}{16{k}^{4}+8{k}^{2}+1}}$,
当k≠0时,丨AB丨=$\frac{4}{\sqrt{5}}$$\sqrt{1+\frac{9}{16{k}^{2}+\frac{1}{{k}^{2}}+8}}$≤$\frac{4}{\sqrt{5}}$×$\sqrt{1+\frac{9}{2\sqrt{16{k}^{2}×\frac{1}{{k}^{2}}}+8}}$=$\sqrt{5}$,
当且仅当16k2=$\frac{1}{{k}^{2}}$,即k=±$\frac{1}{2}$时取等号.
当k=0时,丨AB丨=$\frac{4\sqrt{5}}{5}$,
则丨AB丨的最大值为$\sqrt{5}$,
则△OAB面积S=$\frac{1}{2}$×d×丨AB丨=$\frac{1}{2}$×$\frac{2\sqrt{5}}{5}$×$\sqrt{5}$=1,
∴△OAB面积的最大值1.

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,基本不等式的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为(  )
A.$\frac{2}{π}$B.$\frac{4}{π}$C.$\frac{2}{{π}^{3}}$D.$\frac{4}{{π}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三棱锥A-BCD中,DA⊥AC,DB⊥BC,DA=AC,DB=BC,AB=$\frac{{\sqrt{2}}}{2}$CD,若三棱锥A-BCD的体积为$\frac{{2\sqrt{2}}}{3}$,则CD的长为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,值域为[0,+∞)的偶函数是(  )
A.y=x2-1B.y=|x|C.y=lgxD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大小;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC边上的中线AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二项式($\root{3}{x}$-$\frac{1}{x}$)n的展开式中,所有项的二项式系数之和为4096,则常数项等于-220.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$(1+{y^3}){(x-\frac{1}{{{x^2}y}})^n}(n∈{N_+})$的展开式中存在常数项,则常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-2x)1nx+ax2+2,g(x)=f(x)-x-2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若a>0且函数g(x)有且仅有一个零点,求实数a的值;
(Ⅲ)在(Ⅱ)的条件下,若e-2<x<e时,g(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值为10,则m=4.

查看答案和解析>>

同步练习册答案