精英家教网 > 高中数学 > 题目详情
1.二项式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展开式中,$\sqrt{x}$项的系数是(  )
A.$\frac{15}{2}$B.-$\frac{15}{2}$C.15D.-15

分析 利用二项式展开式的通项公式,求得展开式中含$\sqrt{x}$项的系数.

解答 解:二项式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展开式的通项共公式为
Tr+1=${C}_{10}^{r}$•${(\frac{\sqrt{x}}{2})}^{10-r}$•${(-\frac{2}{x})}^{r}$=(-1)r•${C}_{10}^{r}$•22r-10•${x}^{\frac{10-3r}{2}}$,
令$\frac{10-3r}{2}$=$\frac{1}{2}$,求得r=3,可得展开式中含$\sqrt{x}$项的系数是-${C}_{10}^{3}$•2-4=-$\frac{15}{2}$,
故选:B.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线y=4x与曲线y=x2围成的封闭区域面积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设D为△ABC的所在平面内一点,$\overrightarrow{BC}=-4\overrightarrow{CD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}$B.$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$C.$\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若0<x<π,判断x与sinx的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow{b}$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$
(1)求函数f(x)在[0,π]上的单调递增区间;
(2)△ABC的角A,B,C的对边长分别为a,b,c,且a2,b2,c2成等差数列,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为(  )
A.$\frac{2}{π}$B.$\frac{4}{π}$C.$\frac{2}{{π}^{3}}$D.$\frac{4}{{π}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)在平面直角坐标系中,设曲线C经过伸缩变换φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=y}\end{array}\right.$得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b-$\frac{{\sqrt{3}}}{2}$c.
(Ⅰ)求角A的大小;
(Ⅱ)若B=$\frac{π}{6}$,AC=4,求BC边上的中线AM的长.

查看答案和解析>>

同步练习册答案