精英家教网 > 高中数学 > 题目详情

,其中为正实数.
(1)当时,求的极值点;
(2)若上的单调函数,求的取值范围.

(1)x1是极小值点,x2是极大值点.
(2)a的取值范围为(0,1].

解析试题分析:解 对f(x)求导得
f′(x)=ex. ①
(1)当a时,令f′(x)=0,则4x2-8x+3=0,解得x1x2.
结合①,可知

x





f′(x)

0

0

f(x)
?
极大值
?
极小值
?
所以,x1是极小值点,x2是极大值点.
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,
因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.所以a的取值范围为(0,1].
考点:导数的运用
点评:解决的关键是根据导数的符号判定函数单调性,以及函数极值的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求在图象与轴交点处的切线方程;
(2)若在(1,2)上为单调函数,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,记的导函数的导函数

的导函数,…,的导函数.
(1)求
(2)用n表示
(3)设,是否存在使最大?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时,求曲线在点处的切线方程;
(2)求的单调区间.(要写推理过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3-2log2xg(x)=log2x.
(1)如果x∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域;
(2)求函数M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)对x∈[2,4]有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在实数集上的函数,其导函数记为
(1)设函数,求的极大值与极小值;
(2)试求关于的方程在区间上的实数根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)在如图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.

查看答案和解析>>

同步练习册答案