设,其中为正实数.
(1)当时,求的极值点;
(2)若为上的单调函数,求的取值范围.
(1)x1=是极小值点,x2=是极大值点.
(2)a的取值范围为(0,1].
解析试题分析:解 对f(x)求导得
f′(x)=ex. ①
(1)当a=时,令f′(x)=0,则4x2-8x+3=0,解得x1=,x2=.
结合①,可知
所以,x1=是极小值点,x2=是极大值点.x f′(x) + 0 - 0 + f(x) ? 极大值 ? 极小值 ?
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0,知ax2-2ax+1≥0在R上恒成立,
因此Δ=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.所以a的取值范围为(0,1].
考点:导数的运用
点评:解决的关键是根据导数的符号判定函数单调性,以及函数极值的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知(,为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=3-2log2x,g(x)=log2x.
(1)如果x∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域;
(2)求函数M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)对x∈[2,4]有解,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com