精英家教网 > 高中数学 > 题目详情
其市有小型超市72个,中型超市24个,大型超市12个,现采用分层抽样方法抽取9个超市对其销售商品质量进行调查.
(I)求应从小型、中型、大型超市分别抽取的个数;
(II)若从抽取的9个超市中随机抽取3个做进一步跟踪分析,记随机变量X为抽取的小型超市的个数,求随机变量X的分布列及数学期望E(X) .
(I)1、2、6;(II)E(X)=2.

试题分析:(I)采用分层抽样方法易知各类型超市抽取的个数;(II)先得随机变量X的取值,再求随机变量X取不同值时的概率,可得随机变量X的分布列,再利用数学期望公式的随机变量X的期望E(X) .
试题解析:(1)抽取大型超市个数:(个)
抽取中型超市个数:(个)
抽取小型超市个数:(个)                      6分
(2) ;
;                   10分
分布列为
X
0
1
2
3
P




                                                         11分
所以                 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A,B,C,D四个城市,它们各自有一个著名的旅游点,依次记为A,b,C,D,把A,B,C,D和A,b,C,D分别写成左、右两列.现在一名旅游爱好者随机用4条线把城市与旅游点全部连接起来, 构成“一一对应”.规定某城市与自身的旅游点相连称为“连对”,否则称为“连错”,连对一条得2分,连错一条得0分.
(Ⅰ)求该旅游爱好者得2分的概率.
(Ⅱ)求所得分数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顾客数(人)

20
10
5

结算时间(分钟/人)
0.5
1
1.5
2
2.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为,获得50元奖金的概率为.
(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;
(II)为了能够筹得资金资助福利事业, 求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于(  )
A.0B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:
(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;
(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或
抽取的人数达到4位,则停止抽取,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子中,从中任意摸
出两个小球,它们的标号分别为,记.
(1)求随机变量的分布列及数学期望;
(2)设“函数在区间(2,3)上有且只有一个零点”为事件,求事件 
发生的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设离散型随机变量X的概率分布列如下表:
X
1
2
3
4
P

p


 
则p等于(  )
A.      B.       C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

随机变量的分布列如右:其中成等差数列,若,则的值是    








 

查看答案和解析>>

同步练习册答案