精英家教网 > 高中数学 > 题目详情
已知数列{an} 和{bn} 的通项公式分别为an=3n+6,bn=2n+7 (n∈N*).将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,cn,…
(1)求三个最小的数,使它们既是数列{an} 中的项,又是数列{bn}中的项;
(2)数列c1,c2,c3,…,c40 中有多少项不是数列{bn}中的项?请说明理由;
(3)求数列{cn}的前4n 项和S4n(n∈N*).
分析:(1)分别由数列{an} 和{bn} 的通项公式分别为an和bn列举出各项,即可找出既是数列{an} 中的项,又是数列{bn}中的项的三个最小的数;
(2)根据题意列举出数列{cn}的40项,找出不是数列{bn}中的项即可;
(3)表示出数列{bn}中的第3k-2,3k-1及3k项,表示出数列{an} 中的第2k-1,及2k项,把各项按从小到大的顺序排列,即可得到数列{cn}的通项公式,并求出数列{cn}的第4k-3,4k-2,4k-1及4k项的和,把数列{cn}的前4n项和每四项结合,利用等差数列的前n项和的公式即可求出数列{cn}的前4n项和S4n
解答:解:(1)因为数列{an} 和{bn} 的通项公式分别为an=3n+6,bn=2n+7,
所以数列{an}的项为:9,12,15,18,21,24,…;数列{bn} 的项为:9,11,13,15,17,19,21,23,…,
则既是数列{an} 中的项,又是数列{bn}中的项的三个最小的数为:9,15,21;
(2)数列c1,c2,c3,…,c40的项分别为:
9,11,12,13,15,17,18,19,21,23,24,25,27,29,30,31,33,35,36,37,
39,41,42,43,45,47,48,49,51,53,54,55,57,59,60,61,63,65,66,67,
则不是数列{bn}中的项有12,18,24,30,36,42,48,54,60,66共10项;
(3)b3k-2=2(3k-2)+7=6k+3=a2k-1,b3k-1=6k+5,a2k=6k+6,b3k=6k+7,
∵6k+3<6k+5<6k+6<6k+7,
∴cn=
6k+3(n=4k-3)
6k+5(n=4k-2)
6k+6(n=4k-1)
6k+7(n=4k)
 
,k∈N+,c4k-3+c4k-2+c4k-1+ck=24k+21,
则S4n=(c1+c2+c3+c4)+…+(c4k-3+c4k-2+c4k-1+c4k)=24×
n(n+1)
2
+21n=12n2+33n.
点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的前n项和的公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案