精英家教网 > 高中数学 > 题目详情

【题目】在一次考试中,某班级50名学生的成绩统计如下表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.

分数

69

73

74

75

77

78

79

80

82

83

85

87

89

93

95

合计

人数

2

4

4

2

3

4

6

3

3

4

4

5

2

3

1

50

经计算,样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为X,并根据以下不等式进行评判:

评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.

1)试判断该份试卷被评为哪种等级;

2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.

【答案】1)该份试卷应被评为合格试卷;

2)见解析,1.2 .

【解析】

1)根据频数分布表,计算出的值,由此判断出该份试卷为合格试卷

2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.

解:(1

因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷;

250人中成绩一般、良好及优秀的比例为

所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0123

所以随机变量的分布列为:

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,且过点

1)求椭圆的方程;

2)设的左焦点,点为直线上任意一点,过点的垂线交于两点

(ⅰ)证明:平分线段(其中为坐标原点);

(ⅱ)当取最小值时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若点在直线上,且,求直线的斜率;

2)若,求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】受传统观念的影响,中国家庭教育过程中对子女教育的投入不遗余力,基础教育消费一直是中国家庭教育的重头戏,升学压力的逐渐增大,特别是对于升入重点学校的重视,导致很多家庭教育支出增长较快,下面是某机构随机抽样调查某二线城市2012-2018年的家庭教育支出的折线图.

(附:年份代码1-7分别对应的年份是2012-2018

1)从图中的折线图看出,可用线性回归模型拟合yt的关系,请求出相关系数r(精确到0.001),并指出是哪一层次的相关性?(相关系数,相关性很强;,相关性一般;,相关性较弱).

2)建立y关于t的回归方程;

3)若2019年该地区家庭总支出为10万元,预测家庭教育支出约为多少万元?

附注:参考数据:.

参考公式:,回归方程

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:

月份

销售单价(元)

销售量(千件)

(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);

(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?

参考公式:回归直线方程,其中.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着十二生肖图案的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这十二个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每个国家对退休年龄都有不一样的规定,从2018年开始,我国关于延迟退休的话题一直在网上热议,为了了解市民对延迟退休的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:

年龄段(单位:岁)

被调查的人数

赞成的人数

1)从赞成延迟退休的人中任选1人,此人年龄在的概率为,求出表格中的值;

2)若从年龄在的参与调查的市民中按照是否赞成延迟退休进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取4人参加座谈会,记这4人中赞成延迟退休的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,不等式的解集是.

1)求的解析式;

2)不等式组的正整数解只有一个,求实数k取值范围;

3)若对于任意,不等式恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点在抛物线上,且三点共线.若圆的直径为.

1)求抛物线的标准方程;

2)过点的直线与抛物线交于点,分别过两点作抛物线的切线,证明直线的交点在定直线上,并求出该直线.

查看答案和解析>>

同步练习册答案