精英家教网 > 高中数学 > 题目详情
19.已知F是抛物线x2=2py的焦点,A、B是该抛物线上的两点,且满足|AF|+|BF|=3p,则线段AB的中点到x轴的距离为p.

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点纵坐标,求出线段AB的中点到x轴的距离.

解答 解:抛物线x2=2py的焦点F(0,$\frac{p}{2}$)准线方程y=-$\frac{p}{2}$,
设A(x1,y1),B(x2,y2
∴|AF|+|BF|=y1+$\frac{p}{2}$+y2+$\frac{p}{2}$=3p
解得y1+y2=2p,
∴线段AB的中点纵坐标为p
∴线段AB的中点到x轴的距离为p.
故答案为:p.

点评 本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{2x-m}{{{x^2}+1}}$定义在实数集R上的函数,把方程f(x)=$\frac{1}{x}$称为函数f(x)的特征方程,特征方程的两个实根α,β(α<β)称为f(x)的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)求αf(β)+βf(α)的值;
(3)判断函数y=f(x),x∈[α,β]的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={-1,0,1},B={x|x2-x<2},则集合A∩B=(  )
A.{-1,0,1}B.{0,1}C.{-1,0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知两条不重合的直线m、n,两个不重合的平面α、β,有下列四个命题:
①若m∥n,m?α,则n∥α;
②若n⊥α,m⊥β且m∥n则α∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,且n?β,n⊥m,则n⊥α.
其中正确命题为(  )
A.①②B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U=R,集合A={x|x2-2x-3<0},B={x|0<x<3},则(  )
A.A∪B=BB.A∩∁UB=∅C.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将直角边长为1的等腰直角△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:
①f(x)的值域为[0,$\sqrt{2}$];
②f(x)是周期函数且周期为1+$\sqrt{2}$;
③f(x)的一个减区间是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3π}{4}$+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$).
其中正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题甲:sina-cosa=$\sqrt{2}$,命题乙:双曲线$\frac{{x}^{2}}{co{s}^{2}a}$-$\frac{{y}^{2}}{si{n}^{2}a}$=1的渐近线与圆(x-1)2+y2=$\frac{1}{2}$相切,则命题甲为命题乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}的前n项和为Sn,Sn=2n-n,等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3-1成等比数列.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,当n≥2时求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设l,m是两条不同的直线,a是一个平面,则下列说法正确的是(  )
A.若l⊥m,m?,则l⊥aB.若l⊥a,l∥m,则m⊥aC.若l∥a,m?a,则l∥mD.若l∥a,m∥a,则l∥m

查看答案和解析>>

同步练习册答案