ÏÂÁнáÂÛ£º
£¨1£©ÊµÊýa£¬b£¬c³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬b£¬c£¬a³ÉµÈ²îÊýÁУ¬Ôòq=1£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ²îÊýÁУ¬µÈ±ÈÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ±ÈÊýÁУ»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
an+1
3
£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ®
£¨4£©Èñ½Ç¡÷ABCÖÐsinC£¾cosBÒ»¶¨³ÉÁ¢£®
ÆäÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
A¡¢3¸öB¡¢2¸öC¡¢1¸öD¡¢0¸ö
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺ÔĶÁÐÍ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,½âÈý½ÇÐÎ
·ÖÎö£º£¨1£©ÓɵȲîÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬¼´¿ÉµÃµ½¹«±È£»
£¨2£©ÇóµÈ²îÊýÁеÄͨÏîºÍÇóºÍ£¬¼´¿ÉÅжÏÿ¸ômÏîÇóºÍ³ÉµÈ²îÊýÁУ®È¡¹«±ÈΪ-1£¬mΪżÊý£¬Ôòÿ¸ômÏîÇóºÍ¾ùΪ0£¬²»ÎªµÈ±ÈÊýÁУ»
£¨3£©ÓÉÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµÊ½£¬¼´¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉÈñ½ÇÈý½ÇÐÎÖÐB+C£¾
¦Ð
2
£¬ÔòC£¾
¦Ð
2
-B£¬Á½±ßÈ¡ÕýÏÒ£¬¼´¿ÉÅжϣ®
½â´ð£º ½â£º£¨1£©ÊµÊýa£¬b£¬c³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬b£¬c£¬a³ÉµÈ²îÊýÁУ¬Ôòb2=ac£¬ÇÒa+b=2c£¬ÏûÈ¥b£¬µÃ
£¨2c-a£©2=ac£¬»¯¼òµÃa=c»òa=4c£¬¼´¹«±ÈΪ1»ò¡À2£¬¹Ê£¨1£©´í£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm=Sm+m2d£¬S3m-S2m=Sm+2m2d£¬¹¹³ÉµÈ²îÊýÁУ¬
µÈ±ÈÊýÁÐÖУ¬Èô¹«±ÈΪ-1£¬mΪżÊý£¬ÔòSm=0£¬S2m-Sm=0£¬S3m-S2m=0£¬Ôò²»ÎªµÈ±ÈÊýÁУ¬¹Ê£¨2£©´í£»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
an+1
3
£¬ÔòSn-1=
an
3
£¬£¨n£¾1£©£¬Ïà¼õµÃ
an=
an+1
3
-
an
3
£¬Ôòan+1=4an£¬£¨n£¾1£©£¬ÓÉÓÚÊ×Ïîδ֪£¬¹Ê²»ÄÜÈ·¶¨ÎªµÈ±ÈÊýÁУ¬¹Ê£¨3£©´í£»
£¨4£©Èñ½Ç¡÷ABCÖУ¬B+C£¾
¦Ð
2
£¬ÔòC£¾
¦Ð
2
-B£¬¼´ÓÐsinC£¾cosB³ÉÁ¢£¬¹Ê£¨4£©¶Ô£®
¹ÊÑ¡£ºC£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁк͵ȲîÊýÁеÄͨÏîºÍÇóºÍ£¬ÒÔ¼°ÐÔÖʵÄÔËÓ㬿¼²éÊýÁеÄͨÏîÓëǰnÏîºÍµÄ¹ØÏµ£¬Í¬Ê±¿¼²éÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼°ÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

F1¡¢F2ÊÇÍÖÔ²
x2
4
+y2
=1µÄ×óÓÒ½¹µã£¬MÊÇÍÖÔ²ÉÏÒ»µã£¬Èô
MF1
MF2
=0£¬ÔòMµ½yÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
A¡¢
2
3
3
B¡¢
2
6
3
C¡¢
3
3
D¡¢
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶Ô´óÓÚ»òµÈÓÚ2µÄ×ÔÈ»ÊýmµÄn´ÎÃÝÓÐÈçÏ·ֽⷽʽ£º22=1+3£¬32=1+3+5£¬42=1+3+5+7£»23=3+5£¬33=7+9+11£¬43=13+15+17+19£®¸ù¾ÝÉÏÊö·Ö½â¹æÂÉ£¬Ôò52=1+3+5+7+9£®Èôm3£¨m¡ÊN+£©µÄ·Ö½âÖÐ×îСµÄÊýÊÇ73£¬ÔòmµÄֵΪ£¨¡¡¡¡£©
A¡¢6B¡¢8C¡¢9D¡¢12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁйØÏµÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
¢Ù0¡Ê{0}£¬¢Ú¦µ
 
?
¡Ù
{0}£¬¢Û{0£¬1}⊆{£¨0£¬1£©}£¬¢Ü{£¨a£¬b£©}={£¨b£¬a£©}£®
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¹²ÓÐ2n+1ÏÆäÖÐÆæÊýÏîͨÏʽΪan=2n-1£¬ÔòÊýÁÐ{an}µÄÆæÊýÏîµÄºÍΪ£¨¡¡¡¡£©
A¡¢2£¨2n+1-1£©-n-1
B¡¢
2
3
£¨4n+1-1£©-n-1
C¡¢2£¨4n+1-1£©-n-1
D¡¢
2
3
£¨2n+1-1£©-n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

A¡¢B¡¢C¡¢D¡¢E¹²5ÈËÕ¾³ÉÒ»ÅÅ£¬Èç¹ûA¡¢BÖмä¸ôÒ»ÈË£¬ÄÇôÅÅ·¨ÖÖÊýÓУ¨¡¡¡¡£©
A¡¢60B¡¢36C¡¢48D¡¢24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=t
y=t+4
£¨tΪ²ÎÊý£©£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=2+2
2
cos¦È
y=2+2
2
sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÖ±ÏßlºÍÇúÏßCµÄ¹«¹²µãÓУ¨¡¡¡¡£©
A¡¢0¸öB¡¢1¸öC¡¢2¸öD¡¢ÎÞÊý¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x-1+
9
x+1
£¨x£¾-1£©£®µ±x=aʱ£¬f£¨x£©È¡µÃ×îСֵ£¬Ôòa=£¨¡¡¡¡£©
A¡¢2B¡¢1C¡¢-3D¡¢-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa¡ÊR£¬º¯Êýf£¨x£©=ax3-2x2-4ax£¬Èôx=2ÊǺ¯Êýy=f£¨x£©µÄ¼«Öµµã
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=aÓÐÈý¸ö²»Í¬Êµ¸ù£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸