精英家教网 > 高中数学 > 题目详情
8.如图,在棱长为3的正方体ABCD-A1B1C1D1中,点P是平面A1BC1内一动点,且满足|PD|+|PB1|=2+$\sqrt{13}$,则直线B1P与直线AD1所成角的余弦值的取值范围为(  )
A.[0,$\frac{1}{2}$]B.[0,$\frac{1}{3}$]C.[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$]D.[$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

分析 取BC1的中点E,作点B1在平面A1BC1内的投影O,过O作OF∥BC1交A1B于点F,连结B1D、A1E,以O为坐标原点,分别以OF、OE、OB1所在直线为x、y、z轴建立空间直角坐标系,利用cos<$\overrightarrow{P{B}_{1}}$,$\overrightarrow{B{C}_{1}}$>=$\frac{\overrightarrow{P{B}_{1}}•\overrightarrow{B{C}_{1}}}{|\overrightarrow{P{B}_{1}}||\overrightarrow{B{C}_{1}}|}$计算即可.

解答 解:取BC1的中点E,作点B1在平面A1BC1内的投影O,
过O作OF∥BC1交A1B于点F,连结B1D、A1E,
以O为坐标原点,分别以OF、OE、OB1所在直线为x、y、z轴建立空间直角坐标系如图,
根据题意,易得D(0,0,-2$\sqrt{3}$),B1(0,0,$\sqrt{3}$),B($\frac{3}{2}$$\sqrt{2}$,$\frac{\sqrt{6}}{2}$,0),C1(-$\frac{3}{2}$$\sqrt{2}$,$\frac{\sqrt{6}}{2}$,0),
设P(x,y,0),则$\overrightarrow{PD}$=(-x,-y,-2$\sqrt{3}$),$\overrightarrow{P{B}_{1}}$=(-x,-y,$\sqrt{3}$),$\overrightarrow{B{C}_{1}}$=(-3$\sqrt{2}$,0,0),
∵|PD|+|PB1|=2+$\sqrt{13}$,
∴$\sqrt{{x}^{2}+{y}^{2}+12}$+$\sqrt{{x}^{2}+{y}^{2}+3}$=2+$\sqrt{13}$,
∴|$\overrightarrow{P{B}_{1}}$|=2,即x2+y2=1,
记α为直线B1P与直线BC1所成的角,则α即为直线B1P与直线AD1所成的角,
∴cos<$\overrightarrow{P{B}_{1}}$,$\overrightarrow{B{C}_{1}}$>=$\frac{\overrightarrow{P{B}_{1}}•\overrightarrow{B{C}_{1}}}{|\overrightarrow{P{B}_{1}}||\overrightarrow{B{C}_{1}}|}$=$\frac{3\sqrt{2}x}{2×3\sqrt{2}}$=$\frac{x}{2}$,
∵点P的轨迹在平面A1BC1内是以O为圆心,1为半径的单位圆,
∴-1≤x≤1,∴-$\frac{1}{2}$≤cos<$\overrightarrow{P{B}_{1}}$,$\overrightarrow{B{C}_{1}}$>≤$\frac{1}{2}$,
又∵α为锐角,∴0≤cos<$\overrightarrow{P{B}_{1}}$,$\overrightarrow{B{C}_{1}}$>≤$\frac{1}{2}$,
故选:A.

点评 本题考查求空间中线线角的三角函数值,建立恰当的坐标系是解决本题的关键,注意解题方法的积累,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设非负实数x,y满足约束条件$\left\{\begin{array}{l}x+y-3{≤}_{\;}0{,}_{\;}\\ 2x+y-4{≥}_{\;}0\end{array}\right.$则z=2x+3y的最大值为(  )
A.4B.8C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,过圆O外一点A分别作圆O的两条切线AB、AC,延长BA于点D,使DA=AB,直线CD交圆O于点E,AE交圆O于点F,交BC于点I,AC与DF交于点H.
(Ⅰ)证明:A、D、C、F四点共圆.
(Ⅱ)若HI∥DE,求证:△BED为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在满足面积和周长的数值相等的所有直角三角形中,面积的最小值为(  )
A.($\sqrt{2}$-1)2B.2($\sqrt{2}$+1)2C.3($\sqrt{2}$-1)2D.4($\sqrt{2}$+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),A(2,0)是长轴的一个端点,弦BC过椭圆的中心O,且$\overrightarrow{AC}$$•\overrightarrow{BC}$=0,|$\overrightarrow{OC}-\overrightarrow{OB}|$=2|$\overrightarrow{BC}-\overrightarrow{BA}$|.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P、Q为椭圆上异于A,B且不重合的两点,且∠PCQ的平分线总是垂直于x轴,是否存在实数λ,使得$\overrightarrow{PQ}$=λ$\overrightarrow{AB}$,若存在,请求出λ的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以坐标原点为圆心,椭圆的短半轴为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右顶点B作两条互相垂直的直线l1,l2,且分别交椭圆C于M,N两点,探究直线MN是否过定点?若过定点求出定点坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=2sin(ωx+φ)(ω>0)与直线y=a(a>0)相切,且y=a与x轴及函数的对称轴围成的图形面积为π,则ω的值不可能是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为$2a,2\sqrt{2}$,右焦点F(c,0),直线l:cx-a2=0与x轴相交于点$A,\overrightarrow{OF}=2\overrightarrow{FA}$,过点A的直线m与椭圆E交于P,Q两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若$\overrightarrow{OP}•\overrightarrow{OQ}=0$,求直线m的方程;
(Ⅲ)过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:Q,F,M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=2BE=4.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求$\frac{AF}{AB}$的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案