精英家教网 > 高中数学 > 题目详情
4.已知各项均为正数的等差数列{an}的前20项和为100,那么a1•a20的最大值是(  )
A.50B.25C.100D.$2\sqrt{20}$

分析 利用等差数列的求和公式、基本不等式的性质即可得出.

解答 解:∵a1,a20>0,
∴100=S20=$\frac{20({a}_{1}+{a}_{20})}{2}$≥10×2$\sqrt{{a}_{1}•{a}_{20}}$=20$\sqrt{{a}_{1}•{a}_{20}}$,
∴a1•a20≤25,当且仅当a1=a20=5时取等号.
故选:B.

点评 本题考查了等差数列的求和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已椭圆方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$,则该椭圆的焦距为(  )
A.10B.8C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的导数:
(1)$y=\frac{{{x^3}-1}}{sinx}$;         
(2)y=2e1-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(  )
A.(-∞,1]B.(+∞,1)C.(+∞,2)D.(+∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正方体ABCD-A1B1C1D1中,P为平面BB1C1C内一动点,且P到BC的距离与P到C1D1的距离之比为2,则点P的轨迹为(  )
A.B.双曲线C.抛物线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,则tan($\frac{5π}{6}$+α)=(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,曲线C1的参数方程为:$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$.
(1)求曲线C2的直角坐标方程;
(2)已知点M曲线C1上任意一点,求点M到曲线C2的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:任意一个三角形,两边之和大于第三边,
命题q:任意一个三角形,两边之差小于第三边.
写出命题“p∧q,p∨q,¬p”形式的复合命题,并指出其真假.

查看答案和解析>>

同步练习册答案