精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(  )
A.(-∞,1]B.(+∞,1)C.(+∞,2)D.(+∞,2)

分析 由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x-a|在区间[1,+∞)上是增函数,又绝对值函数t=|x-a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围.

解答 解:因为函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数
由复合函数的单调性知,必有t=|x-a|在区间[1,+∞)上是增函数
又t=|x-a|在区间[a,+∞)上是增函数
所以[1,+∞)⊆[a,+∞),故有a≤1
故选:A.

点评 本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题的否定为假命题的是(  )
A.?x∈R,x2+2x+2≤0B.任意一个四边形的四个顶点共圆
C.?x∈R,sin2x+cos2x=1D.所有能被3整除的整数都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图:已知$\overrightarrow{OC}=-\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OP}$的终点P在△OBC的边界及内部,且$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$则x、y满足的条件为(  )
A.$\left\{{\begin{array}{l}{-\frac{1}{2}≤x≤0}\\{0≤y≤1}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x≤0}\\{y≥0}\\{y-2x-1≤0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x≤0}\\{y≥0}\\{2y-x-1≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{-\frac{1}{2}≤x≤0}\\{0≤y≤1}\\{y-2x-1≤0}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.记数列{2n}的前n项和为an,数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,数列{bn}的通项公式为bn=n-8,则bnSn的最小值为(  )
A.-3B.-4C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.应用反证法推出矛盾的推理过程中可作为条件使用的是①结论的否定②已知条件③公理、定理、定义等④原结论(  )
A.①②B.②③C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知各项均为正数的等差数列{an}的前20项和为100,那么a1•a20的最大值是(  )
A.50B.25C.100D.$2\sqrt{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x∈(0,$\frac{π}{2}$),求证:sinx<x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论中正确的个数有(  )
①幂函数图象一定过原点
②当α<0时,幂函数是减函数
③当α>0时,幂函数是增函数
④函数y=2x2即是二次函数,又是幂函数.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知θ是第四象限角,则$\sqrt{{{sin}^2}θ-{{sin}^4}θ}$可化简为(  )
A.$\frac{1}{2}sin2θ$B.$-\frac{1}{2}sin2θ$C.sin2θD.-sin2θ

查看答案和解析>>

同步练习册答案