精英家教网 > 高中数学 > 题目详情
8.下列结论中正确的个数有(  )
①幂函数图象一定过原点
②当α<0时,幂函数是减函数
③当α>0时,幂函数是增函数
④函数y=2x2即是二次函数,又是幂函数.
A.0个B.1个C.2个D.3个

分析 利用忙活啥的简单性质判断即可.

解答 解:对于①,幂函数图象一定过原点,利用y=x-1,函数的图象不经过原点,所以①不正确.
对于②,当α<0时,幂函数是减函数,利用y=x-1,在定义域内函数表示单调减函数,所以②不正确.
对于③,当α>0时,幂函数是增函数,利用y=x2,函数在定义域内不是增函数,所以③不正确;
对于④,函数y=2x2即是二次函数,又是幂函数.函数是二次函数,但是不是幂函数,所以④不正确.
正确命题的个数为0.
故选:A.

点评 本题考查命题的真假的判断,幂函数的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ 2x-y≤0\end{array}\right.$,若y≥k(x+2)恒成立,则实数k的最大值是(  )
A.-1B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(  )
A.(-∞,1]B.(+∞,1)C.(+∞,2)D.(+∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,则tan($\frac{5π}{6}$+α)=(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}是等差数列,且a4+4是a2+2和a6+6的等比中项,则{an}的公差d=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,曲线C1的参数方程为:$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$.
(1)求曲线C2的直角坐标方程;
(2)已知点M曲线C1上任意一点,求点M到曲线C2的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某种种子每粒发芽的概率都为0.8,现播种了100粒,对于没有发芽的种子,每粒需再补种3粒,补种的种子数记为X.
(1)求X=30的概率(只列式即可);
(2)求随机变量X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,以O为极点,x轴为正半轴建立直角坐标系,曲线M的方程为ρ2(3+cos2θ)=8.
(1)求曲线的直角坐标方程
(2)若点A(0,m),B(n,0)在曲线M上,点F(0,-$\sqrt{{m^2}-{n^2}}}$),FP平行于x轴交曲线M于点P(x0,y0),其中m>0,n>0,x0>0,求证:PO∥BA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a7+a9=16,S11=66,则a12的值是12.

查看答案和解析>>

同步练习册答案