精英家教网 > 高中数学 > 题目详情
14.应用反证法推出矛盾的推理过程中可作为条件使用的是①结论的否定②已知条件③公理、定理、定义等④原结论(  )
A.①②B.②③C.①②③D.①②④

分析 利用反证法的证题思想,即可得到结论.

解答 解:应用反证法推出矛盾的推导过程中,作为条件使用的通常有①结论相反的判断,即假设;②原命题的条件;③公理、定理、定义等
故选:C.

点评 本题考查反证法,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=45°,则椭圆的离心率为(  )
A.2-$\sqrt{2}$B.$\sqrt{2}-1$C.3-2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:
     年份x20112012201320142015
储蓄存款y(千亿元)567810
(1)求y关于x的回归方程$\widehat{y}$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehat{b}$x+$\widehat{a}$
(2)用所求回归方程预测该地区2016年的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{y}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{n}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\overline{b}$$\overline{x}$
(提示:设时间代号t=x-2010)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”.现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
期末分数段(0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
人数510151055
“过关”人数129734
(1)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为期末数学成绩不低于90分与测试“过关”是否有关?说明你的理由.
分数低于90分人数分数不低于90分人数合计
过关人数121426
不过关人数18624
合计302050
(2)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.025
k2.0722.7063.8415.024
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{10}x+1,x≤1\\ lnx-1,x>1\end{array}\right.$,则方程f(x)=ax恰有一个实根时,实数a的取值范围是(  )
A.(-∞,-1]∪[1.1,+∞)∪{$\frac{1}{e^2}$}B.$(-1,\frac{1}{10})$
C.$({-1,0}]∪(\frac{1}{10},\frac{1}{e^2})$D.$(-1,\frac{1}{e^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(  )
A.(-∞,1]B.(+∞,1)C.(+∞,2)D.(+∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.A是△ABC的一个内角,$\overrightarrow{a}$=(2sinA,1),$\overrightarrow{b}$=(cosA,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanA=(  )
A.6B.$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}是等差数列,且a4+4是a2+2和a6+6的等比中项,则{an}的公差d=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y为不等式组$\left\{\begin{array}{l}{x+y≥1}\\{2x-y≤2}\\{y-2≤0}\end{array}\right.$表示的平面区域中的一点,且使得mx+y取得最小值的点(x,y)有无数个,则m=(  )
A.1B.2C.-1D.1或-2

查看答案和解析>>

同步练习册答案