精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{10}x+1,x≤1\\ lnx-1,x>1\end{array}\right.$,则方程f(x)=ax恰有一个实根时,实数a的取值范围是(  )
A.(-∞,-1]∪[1.1,+∞)∪{$\frac{1}{e^2}$}B.$(-1,\frac{1}{10})$
C.$({-1,0}]∪(\frac{1}{10},\frac{1}{e^2})$D.$(-1,\frac{1}{e^2})$

分析 由题意,方程f(x)=ax恰有一个实根,等价于y=f(x)与y=ax有1个交点,求出a的取值范围.

解答 解:当x≤1时f(x)=$\frac{1}{10}$x+1,
∴$\frac{1}{10}$x+1=ax,
∴a=$\frac{1}{10}$+$\frac{1}{x}$,
令g(x)=$\frac{1}{10}$+$\frac{1}{x}$,
∵x≤1 又g(x)在(-∞,0)和(0,1)上都是单调递减的,
∴g(x)在x≤1上的值域是(-∞,0)∪[1.1,+∞),
当x>1时,f(x)=lnx-1=ax,得到a=$\frac{lnx-1}{x}$,
令h(x)=$\frac{lnx-1}{x}$,
∵x>1,∴h′(x)=$\frac{2-lnx}{{x}^{2}}$,
令h′(x)=0,得到2-lnx=0 得到x=e2
∴h(x)在x属于(1,e2)上单调增,在(e2,+∞)上单调减,
∴h(x)的最大值为h(e2)=$\frac{1}{{e}^{2}}$,
∵当x<e时,lnx-1<0,而x趋向正无穷时,h(x)趋向0,
∴h(x)的最小值为h(1)=-1(但是开区间 因为x>1),
∴h(x)的值域是(-1,$\frac{1}{{e}^{2}}$),
∵f(x)=ax恰有一个实根,
∴a∈(-∞,-1]∪[1.1,+∞)∪{$\frac{1}{{e}^{2}}$},
故选:A

点评 本题考查了函数的图象与性质的应用问题,以及分类讨论的思想,以及函导数数与函数最值问题,进行解答,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD,若E,F分别为PC,BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDC⊥平面PAD;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为304200元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2x3-3x2-12x在[-2,3]上的最大值和最小值分别为(  )
A.7,-20B.0,-9C.-9,-20D.-4,-20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点P(cosα,sinα)在直线y=-2x上,则cos(α+$\frac{3π}{2}$)的值等于±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.应用反证法推出矛盾的推理过程中可作为条件使用的是①结论的否定②已知条件③公理、定理、定义等④原结论(  )
A.①②B.②③C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一物体沿直线以v(t)=t2+1(t的单位s,v的单位:m/s)的速度运动,则该物体在0~3s间行进的路程S(S的单位:m)为(  )
A.12B.10C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示(单位:cm),图中阴影部分绕AB旋转一周所形成的几何体的体积为$\frac{140}{3}π$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=$\frac{2x-k}{{{x^2}+1}}$的定义域为[x1,x2],当x2=1时,f(x)≤2恒成立,则k的取值范围是(  )
A.(-∞,-1)B.[-2,+∞)C.(1,2)D.$({\frac{1}{2},\frac{2}{3}})$

查看答案和解析>>

同步练习册答案