精英家教网 > 高中数学 > 题目详情
19.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=$\frac{2x-k}{{{x^2}+1}}$的定义域为[x1,x2],当x2=1时,f(x)≤2恒成立,则k的取值范围是(  )
A.(-∞,-1)B.[-2,+∞)C.(1,2)D.$({\frac{1}{2},\frac{2}{3}})$

分析 对函数f(x)求导数,根据x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,得出f′(x)>0恒成立,f(1)为最大值,列不等式f(1)≤2,解出k的取值范围.

解答 解:∵函数f(x)=$\frac{2x-k}{{{x^2}+1}}$,
∴f′(x)=$\frac{2{(x}^{2}+1)-(2x-k)•2x}{{{(x}^{2}+1)}^{2}}$=$\frac{-{2x}^{2}+2kx+2}{{{(x}^{2}+1)}^{2}}$=$\frac{-{4x}^{2}+4kx+4}{{2{(x}^{2}+1)}^{2}}$,
因为x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,
显然x1≤x≤x2时,4x2-4kx-1≤0,
∴4x2-4kx-4≤-3,
∴f′(x)>0恒成立,
f(1)为最大值.从而f(1)≤2,
即$\frac{2-k}{1+1}$≤2,解得k≥-2.
故选:B.

点评 本题考查了利用导数研究函数的单调性和方程与不等式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{10}x+1,x≤1\\ lnx-1,x>1\end{array}\right.$,则方程f(x)=ax恰有一个实根时,实数a的取值范围是(  )
A.(-∞,-1]∪[1.1,+∞)∪{$\frac{1}{e^2}$}B.$(-1,\frac{1}{10})$
C.$({-1,0}]∪(\frac{1}{10},\frac{1}{e^2})$D.$(-1,\frac{1}{e^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知偶函数f(x)在[0,2]单调递减,若a=f(0.54),b=f(${{{log}_{\frac{1}{2}}}4}$),c=f(20.6),则a、b、c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,内角A,B,C所对边为a,b,c,且acosC+ccosA=2bcosA,则sinB+sinC的取值范围是(  )
A.($\frac{{\sqrt{3}}}{2}$,$\sqrt{3}}$]B.($\frac{\sqrt{3}}{2}$,$\sqrt{3}$)C.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$]D.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}{b}$=2,则${∫}_{0}^{C}({x}^{2}-1)dx$=(  )
A.$±2\sqrt{2}$B.$2\sqrt{2}$C.$±\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y为不等式组$\left\{\begin{array}{l}{x+y≥1}\\{2x-y≤2}\\{y-2≤0}\end{array}\right.$表示的平面区域中的一点,且使得mx+y取得最小值的点(x,y)有无数个,则m=(  )
A.1B.2C.-1D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,已知C(2,5),边BC上的中线AD所在的直线方程是11x-14y+3=0,BC边上高线AH所在的直线方程是y=2x-1,试求直线AB、BC、CA的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线方程的回归系数是$\stackrel{∧}{b}$,回归截距是$\stackrel{∧}{a}$,那么必有(  )
A.$\stackrel{∧}{b}$与r的符号相同B.$\stackrel{∧}{a}$与r的符号相反C.$\stackrel{∧}{b}$与r的符号相反D.$\stackrel{∧}{a}$与r的符号相同

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的顶点B、C在椭圆2x2+3y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案