精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-bx+3,且f(0)=f(4).
(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;
(2)求函数y=f(x)在区间(0,3]上的值域.

解:(1)因为f(0)=f(4),所以图象的对称轴为x==2,
∴b=4,函数表达式为f(x)=x2-4x+3,
解f(x)=0,得x1=1,x2=3,因此函数的零点为:1和3
满足条件f(x)<0的x的集合为(1,3)
(2)f(x)=(x-2)2-1,在区间(0,2)上为增函数,在区间(2,3)上为减函数
所以函数在x=2时,有最小值为-1,最大值小于f(0)=3
因而函数在区间(0,3]上的值域的为[-1,3).
分析:(1)从f(0)=f(4)可得函数图象关于直线x=2对称,用公式可以求出b=4,代入函数表达式,解一元二次不等式即可求出满足条件f(x)<0的x的集合;
(2)在(1)的基础上,利用函数的单调性可以得出函数在区间(0,3]上的最值,从而可得函数在(0,3]上的值域.
点评:本题主要考查二次函数解析式中系数与对称轴的关系、二次函数的单调性与值域问题,属于中档题.只要掌握了对称轴公式,利用函数的图象即可得出正确答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案