精英家教网 > 高中数学 > 题目详情

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

【答案】(Ⅰ)Ⅱ)证明见解析,定值为.

【解析】

(Ⅰ)设,根据题意列方程即可求解.

(Ⅱ)设,由的重心,可得,从而,将直线与椭圆方程联立整理利用韦达定理求出点坐标,代入椭圆方程可得,再利用弦长公式以及三角形的面积公式即可求解.

(Ⅰ)设

因为点的坐标为,所以直线的斜率为

同理,直线的斜率为

由题设条件可得,.

化简整理得,顶点的轨迹的方程为:.

Ⅱ)设

因为的重心,所以

所以

又点在椭圆上,所以

因为的重心,所以倍,

原点到直线的距离为

.

所以

所以,的面积为定值,该定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点QC的渐近线上,则C的两条渐近线方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,已知曲线的参数方程为为参数,),曲线的极坐标方程为:.且两曲线交于两点.

1)求曲线的直角坐标方程;

2)设,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在椭圆上任取一点不为长轴端点),连结,并延长与椭圆分别交于点两点,已知的周长为8面积的最大值为.

1)求椭圆的方程;

2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,沿对角线折起,使之间的距离为分别为线段上的动点

1)求线段长度的最小值;

2)当线段长度最小时,求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

1)若直线与曲线至多只有一个公共点,求实数的取值范围;

2)若直线与曲线相交于两点,且的中点为,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案