精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,已知曲线的参数方程为为参数,),曲线的极坐标方程为:.且两曲线交于两点.

1)求曲线的直角坐标方程;

2)设,若成等比数列,求的值.

【答案】1;(2

【解析】

1)由曲线的参数方程,消参能求出曲线的直角坐标方程;曲线的极坐标方程转化为,由此能求出曲线的直角坐标方程.

2)设直线的参数方程为为参数),将参数方程代入曲线,得,由此能求出实数的值.

1)由曲线的参数方程为为参数,),

消参得曲线的直角坐标方程为

∵曲线的极坐标方程为:

∴曲线的直角坐标方程为

2)由直线过点,且倾斜角为

设直线的参数方程为为参数),

将参数方程代入曲线,得:

,解得

成等比数列,得

由直线参数方程的几何意义知

,即

化简为

解得(舍),

∴实数的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G的右焦点为F,过F的直线l交椭圆于AB两点,直线与l不与坐标轴平行,若AB的中点为NO为坐标原点,直线ON交直线x3于点M.

1)求证:MFl

2)求的最大值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了非洲猪瘟疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就一天中一头猪的平均成本与生猪存栏数量之间的关系进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的八卦,而龙马身上的图案就叫做河图.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.河图将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.

1)求所调查学生日均玩游戏时间在分钟的人数;

2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;

①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;

非游戏迷

游戏迷

合计

合计

②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,为等比数列,公比为..

1)若.

①当,求数列的通项公式;

②设,试比较的大小?并证明你的结论.

2)问集合中最多有多少个元素?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一岛礁旁有两条航道.一日,我方船只甲在航道上巡逻,在与相距50公里的点处,发现不明身份的船乙刚驶过点,并沿方向以40公里/小时的速度运动,船甲立即沿方向以公里/小时()的速度追击,且甲到达点即停止前行(乙可继续前进).设甲出发时,经过小时甲,乙之间的距离为公里,当最小时,可以达到最佳的驱离距离.

1)试求的解析式,并写出定义域;

2)求最多经过多长时间,我船可以达到最佳的驱离距离?

查看答案和解析>>

同步练习册答案