精英家教网 > 高中数学 > 题目详情
已知{an}为等比数列,a1=1,a6=243.Sn为等差数列{bn}的前n项和,b1=3,S5=35.
(1)求{an}和{Bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等比数列通项公式求出{an}的公比,从而得到an=3n-1;由已知条件利用等差数列的前n项和公式求出公差d=2,从而得到bn=3+(n-1)×2=2n+1.
(Ⅱ)由Tn=a1b1+a2b2+…+anbn,利用错位相减法能求出Tn=n×3n
解答: 解:(Ⅰ)∵{an}为等比数列,a1=1,a6=243,
∴1×q5=243,解得q=3,
an=3n-1
∵Sn为等差数列{bn}的前n项和,b1=3,S5=35.
∴5×3+
5×4
2
d=35,解得d=2,
bn=3+(n-1)×2=2n+1.
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn
Tn=3×1+5×3+…+(2n-1)×3n-2+(2n+1)×3n-1
3Tn=3×3+5×32+…+(2n-1)×3n-1+(2n+1)×3n
①-②得:-2Tn=3+2×(3+32+…+3n-1)-(2n+1)×3n
整理得:Tn=n×3n
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=4,an=4-
4
an-1
(n≥2),则a6=(  )
A、
9
4
B、
7
3
C、
20
9
D、
16
7

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1+x)n的二项展开式中,若只有x5的项的系数最大,则n的值为(  )
A、5B、6C、20D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且短轴长为2.
(1)求椭圆的方程;
(2)是否存在直线l与椭圆交于A,B两点,使得
OA
OB
=
2
3
且S△AOB=
2
3
(O为坐标原点)?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+4.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求实数a的值;
(2)在区间[1,3]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-10x+21≤0},B={m|关于x的方程x2-mx+3m-5=0无解}求:
(1)A∪B;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于AC的函数f(x)=x|x-2a|-4x,x∈[2,6].
(1)当a=2时,求f(x)的单调性;
(2)当a≥1时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一矩形铁皮的长为8m,宽为3m,在四个角各截去一个大小相同的小正方形,然后折起,可以制成一个无盖的长方体容器,所得容器的容积V(单位:m3)是关于截去的小正方形的边长x(单位:m)的函数.
(1)写出关于x(单位:m)的函数解析式;
(2)截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F为DE的中点,求证:BE∥平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案