精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx+2sinα(α∈(0,))的导函数f′(x),若存在x0<1使得f′(x0)=f(x0)成立,则实数α的取值范围为(  )
A.(
B.(0,
C.(
D.(0,

【答案】C
【解析】∵f′(x)= , f′(x0)= , f′(x0)=f(x0),
=ln x0+2sinα,
∴sinα=ln x0
又∵0<x0<1,
∴可得 ﹣ln x0)> , 即sin α>
∴α∈(
故选:C.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为4-
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB是半圆O的直径,O是半圆圆心,AB=8,M、N、P是将半圆圆周四等分的三个分点.
(1)从A、B、M、N、P这5个点中任取3个点,求这3个点组成等腰三角形的概率;
(2)在半圆内任取一点S,求△SOB的面积大于4 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.
(1)求证:DE⊥平面BCE;
(2)求二面角A﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 分别是的中点.

(1)求证:四边形是菱形;

(2)求异面直线所成角的大小 (结果用反三角函数值表示) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若点在平面内的射影,求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,求分别满足下列条件的a,b的值.
(1)直线l1过点(﹣3,﹣1),且l1⊥l2
(2)l1∥l2 , 且坐标原点到l1与l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是绵阳市某小区100户居民2014年平均用水量(单位:t)的频率分布直方图,则该小区2014年的月平均用水量的众数,中位数的估计值分别是(

A.2,2.5
B.2,2.02
C.2.25,2.5
D.2.25,2.02

查看答案和解析>>

同步练习册答案