精英家教网 > 高中数学 > 题目详情

已知是定义在R上的偶函数,当时,
(1)写出的解析式;
(2)画出函数的图像;
(3)写出上的值域

解(1)设χ<0 则>0则f(-χ)=4χ-2

又∵f(-χ)=f(χ)  ∴f(χ)=4χ-2
       -4χ-2  χ≥0
∴f(χ)=               
      4χ-2   χ<0 
(2)略
(3)y= f(χ)在[-3、5]的值域为[-22、-2]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求a的值;(2)判断的单调性(不需要写出理由);
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)画出函数f(x)在定义域内的图像
(2)用定义证明函数f(x)在(0,+∞)上为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数
⑴ 判断函数的单调性,并利用单调性定义证明;
⑵ 求函数的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 . (1) 求函数的定义域;(2) 求证上是减函数;(3) 求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,则      

查看答案和解析>>

同步练习册答案