精英家教网 > 高中数学 > 题目详情
20.已知抛物线y2=2px,F为抛物线的焦点,A为抛物线上一点,B(2,-1)为抛物线内一点,若|AF|+|AB|≥3,则p的值为6.

分析 由|AF|+|AB|≥3,可得A到定点B(2,-1)与它到准线的距离之和的最小值等于3,即可求出p的值,

解答 解:由题意,A到定点B(2,-1)与它到准线的距离之和的最小值等于3,
∴2+$\frac{p}{2}$=5,
∴p=6,
故答案为:6.

点评 本题考查抛物线的定义,考查学生分析转化问题的能力,正确运用抛物线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=(  )
A.0.22B.0.28C.0.36D.0.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列数列中,是等差数列的是(  )
A.-1,0,-1,0,…B.1,11,111,1111,…C.1,5,9,13,…D.1,2,4,8,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(3,0),$\overrightarrow{b}$=(k,5),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\vec a$与$\vec b$夹角的余弦值为(  )
A.$\frac{{\sqrt{3}}}{6}$B.-$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC的顶点坐标是A(-1,5)、B(-2,-1)、C(4、7),求BC边上中线所在的直线方程和BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=10,an=$\left\{\begin{array}{l}{{2}^{{a}_{n-1}},n=2k}\\{-1+lo{g}_{2}{a}_{n-1},n=2k+1}\end{array}\right.$(k∈N*),其前n项和为Sn
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则a,b的值为(  )
A.$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$B.$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$
C.$\left\{\begin{array}{l}{a=-1}\\{b=5}\end{array}\right.$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,离心率e=$\frac{1}{2}$,点F2到直线y=x的距离为$\frac{\sqrt{2}}{2}$
(Ⅰ)求椭圆C的方程
(Ⅱ)过F2任意作一条直线l交椭圆C于A、B两点,是否存在以线段AB为直径的圆经过F1,若存在,求出直线l方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案