精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,离心率e=$\frac{1}{2}$,点F2到直线y=x的距离为$\frac{\sqrt{2}}{2}$
(Ⅰ)求椭圆C的方程
(Ⅱ)过F2任意作一条直线l交椭圆C于A、B两点,是否存在以线段AB为直径的圆经过F1,若存在,求出直线l方程;若不存在,请说明理由.

分析 (Ⅰ)由题意得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{|c|}{\sqrt{2}}=\frac{\sqrt{2}}{2}}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=2}\\{c=1}\end{array}\right.$⇒b2=3,求得椭圆方程.
(Ⅱ)设满足条件的直线为l,其方程为x=my+1,两交点坐标为A(x1,y1)B(x2,y2),直线与圆锥曲线联立,利用韦达定理列得条件,求得所需直线.

解答 解:(Ⅰ)由题意得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{|c|}{\sqrt{2}}=\frac{\sqrt{2}}{2}}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=2}\\{c=1}\end{array}\right.$⇒b2=3,所求椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
(Ⅱ)设满足条件的直线为l,其方程为x=my+1,两交点坐标为A(x1,y1)B(x2,y2
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}=1}{3}}\\{x=my+1}\end{array}\right.$消去x得:(3m2+4)y2+6my-9=0
${y}_{1}+{y}_{2}=\frac{-6m}{3{m}^{2}+4}$,${y}_{1}{y}_{2}=\frac{-6m}{3{m}^{2}+4}$
以AB为直径得圆过点F1故有:$\overrightarrow{{F}_{1}A}•\overrightarrow{{F}_{1}B}=0$
(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(m2+1)y1y2+2m(y1+y2)+4=0
代入化简得9m2-7=0,m=$±\frac{\sqrt{7}}{3}$
即存在满足条件的直线l,其方程为3x$±\sqrt{7}y-3=0$.

点评 本题主要考查圆锥曲线的方程和直线与圆锥曲线的综合问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知抛物线y2=2px,F为抛物线的焦点,A为抛物线上一点,B(2,-1)为抛物线内一点,若|AF|+|AB|≥3,则p的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(-2,-1),离心率为$\frac{\sqrt{2}}{2}$.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:直线PQ的斜率为定值,并求这个定值;
(Ⅲ)∠PMQ能否为直角?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:(x-a)2+(y-a+2)2=1,A(0,2),若圆C上存在一点M,满足MA2+MO2=10,则实数a的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,长方体ABCD-A1B1C1D1的AA1=1,底面ABCD的周长为4.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;
(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.A和B是抛物线y2=8x上除去原点以外的两个动点,O是坐标原点且满足$\overrightarrow{OA}•\overrightarrow{OB}$=0,$\overrightarrow{OM}•\overrightarrow{AB}$=0,则支动点M的轨迹方程为(  )
A.x2+y2-8x=0B.y=6x2C.x2+4y2=1D.$\frac{x^2}{9}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=2x2-tx,且|f(x)|=2有且仅有两个不同的实根α和β(α<β).
(1)求实数t的取值范围;
(2)若x1、x2∈[α,β]且x1≠x2,求证:4x1x2-t(x1+x2)-4<0;
(3)设$g(x)=\frac{4x-t}{{{x^2}+1}}$,对于任意x1、x2∈[α,β]上恒有|g(x1)-g(x2)|≤λ(2β-α)成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义:若$\frac{f(x)}{x^k}$在[k,+∞)上为增函数,则称f(x)为“k次比增函数”,其中k∈N*,已知f(x)=eax.(其中e=2.71238…)
(Ⅰ)若f(x)是“1次比增函数”,求实数a的取值范围;
(Ⅱ)当a=$\frac{1}{2}$时,求函数g(x)=$\frac{f(x)}{x}$在[m,m+1](m>0)上的最小值;
(Ⅲ)求证:$\frac{1}{{\sqrt{e}}}+\frac{1}{{2{{(\sqrt{e})}^2}}}+\frac{1}{{3{{(\sqrt{e})}^3}}}+…+\frac{1}{{n{{(\sqrt{e})}^n}}}<\frac{7}{2e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an},{bn}满足bn=log2an,n∈N*,其中{bn}是等差数列,且a8•a2008=$\frac{1}{4}$,则b1+b2+b3+…+b2015=(  )
A.log22015B.2015C.-2015D.1008

查看答案和解析>>

同步练习册答案